Automatic human body segmentation using level-set based active contours followed by optical flow in video surveillance
Human body segmentation is a critical module in video-based activity recognition (AR) because it defines the image area necessary and sufficient for the follow-up modules like feature extraction. Existing methods often involve modeling of the human body and/or the background, which normally requires...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 364 |
---|---|
container_issue | |
container_start_page | 361 |
container_title | |
container_volume | |
creator | Siddiqi, M. H. Phan Tran Ho Truc Sungyoung Lee Young-Koo Lee |
description | Human body segmentation is a critical module in video-based activity recognition (AR) because it defines the image area necessary and sufficient for the follow-up modules like feature extraction. Existing methods often involve modeling of the human body and/or the background, which normally requires extensive amount of training data and cannot efficiently handle changes over time. Recently, active contours have been emerging as an effective segmentation technique in still images. In this paper, an active contour model is adapted that is robust to illumination and clothing changes, typical issues in practical AR systems. To make the model work smoothly with video data, the optical flow is used, which is estimated in two consecutive frames, to position the initial contour in the current frame. The proposed approach is unsupervised, i.e., no training data or prior human model is needed. The proposed model gives prominent results of segmentation. |
doi_str_mv | 10.1109/ICCP.2011.6047897 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6047897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6047897</ieee_id><sourcerecordid>6047897</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-ec0bc629071a96d3f26c97a2606e709efc4dfaebedbd10626f40c88b82a833743</originalsourceid><addsrcrecordid>eNotkM1KAzEcxCMiqLUPIF7yAluT7DYfx7KoLRT00HtJsv_USDYpm-xK394FO5dhfgNzGISeKVlRStTrrm2_VoxQuuKkEVKJG7RUQtJmLQRtJJW36PEahFrfo2XOP2QW50ow_oCmzVhSr4u3-HvsdcQmdRec4dRDLDNOEY_ZxxMOMEGoMhRsdIYOa1v8BNimWNI4ZOxSCOl3LswFp_O8pwN2M8E-4sl3kHAehwl8CDpaeEJ3TocMy6sv0OH97dBuq_3nx67d7CuvSKnAEmM5U0RQrXhXO8atEppxwkEQBc42ndNgoDMdJZxx1xArpZFMy7oWTb1AL_-zHgCO58H3ergcr0_VfwdhX64</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automatic human body segmentation using level-set based active contours followed by optical flow in video surveillance</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Siddiqi, M. H. ; Phan Tran Ho Truc ; Sungyoung Lee ; Young-Koo Lee</creator><creatorcontrib>Siddiqi, M. H. ; Phan Tran Ho Truc ; Sungyoung Lee ; Young-Koo Lee</creatorcontrib><description>Human body segmentation is a critical module in video-based activity recognition (AR) because it defines the image area necessary and sufficient for the follow-up modules like feature extraction. Existing methods often involve modeling of the human body and/or the background, which normally requires extensive amount of training data and cannot efficiently handle changes over time. Recently, active contours have been emerging as an effective segmentation technique in still images. In this paper, an active contour model is adapted that is robust to illumination and clothing changes, typical issues in practical AR systems. To make the model work smoothly with video data, the optical flow is used, which is estimated in two consecutive frames, to position the initial contour in the current frame. The proposed approach is unsupervised, i.e., no training data or prior human model is needed. The proposed model gives prominent results of segmentation.</description><identifier>ISBN: 1457714795</identifier><identifier>ISBN: 9781457714795</identifier><identifier>EISBN: 9781457714818</identifier><identifier>EISBN: 1457714817</identifier><identifier>DOI: 10.1109/ICCP.2011.6047897</identifier><language>eng</language><publisher>IEEE</publisher><subject>active contour ; Adaptive optics ; body segmentation ; Computer vision ; Humans ; Image motion analysis ; Image segmentation ; Motion segmentation ; optical flow ; Optical imaging ; video surveillance</subject><ispartof>2011 IEEE 7th International Conference on Intelligent Computer Communication and Processing, 2011, p.361-364</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6047897$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6047897$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Siddiqi, M. H.</creatorcontrib><creatorcontrib>Phan Tran Ho Truc</creatorcontrib><creatorcontrib>Sungyoung Lee</creatorcontrib><creatorcontrib>Young-Koo Lee</creatorcontrib><title>Automatic human body segmentation using level-set based active contours followed by optical flow in video surveillance</title><title>2011 IEEE 7th International Conference on Intelligent Computer Communication and Processing</title><addtitle>ICCP</addtitle><description>Human body segmentation is a critical module in video-based activity recognition (AR) because it defines the image area necessary and sufficient for the follow-up modules like feature extraction. Existing methods often involve modeling of the human body and/or the background, which normally requires extensive amount of training data and cannot efficiently handle changes over time. Recently, active contours have been emerging as an effective segmentation technique in still images. In this paper, an active contour model is adapted that is robust to illumination and clothing changes, typical issues in practical AR systems. To make the model work smoothly with video data, the optical flow is used, which is estimated in two consecutive frames, to position the initial contour in the current frame. The proposed approach is unsupervised, i.e., no training data or prior human model is needed. The proposed model gives prominent results of segmentation.</description><subject>active contour</subject><subject>Adaptive optics</subject><subject>body segmentation</subject><subject>Computer vision</subject><subject>Humans</subject><subject>Image motion analysis</subject><subject>Image segmentation</subject><subject>Motion segmentation</subject><subject>optical flow</subject><subject>Optical imaging</subject><subject>video surveillance</subject><isbn>1457714795</isbn><isbn>9781457714795</isbn><isbn>9781457714818</isbn><isbn>1457714817</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkM1KAzEcxCMiqLUPIF7yAluT7DYfx7KoLRT00HtJsv_USDYpm-xK394FO5dhfgNzGISeKVlRStTrrm2_VoxQuuKkEVKJG7RUQtJmLQRtJJW36PEahFrfo2XOP2QW50ow_oCmzVhSr4u3-HvsdcQmdRec4dRDLDNOEY_ZxxMOMEGoMhRsdIYOa1v8BNimWNI4ZOxSCOl3LswFp_O8pwN2M8E-4sl3kHAehwl8CDpaeEJ3TocMy6sv0OH97dBuq_3nx67d7CuvSKnAEmM5U0RQrXhXO8atEppxwkEQBc42ndNgoDMdJZxx1xArpZFMy7oWTb1AL_-zHgCO58H3ergcr0_VfwdhX64</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>Siddiqi, M. H.</creator><creator>Phan Tran Ho Truc</creator><creator>Sungyoung Lee</creator><creator>Young-Koo Lee</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201108</creationdate><title>Automatic human body segmentation using level-set based active contours followed by optical flow in video surveillance</title><author>Siddiqi, M. H. ; Phan Tran Ho Truc ; Sungyoung Lee ; Young-Koo Lee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-ec0bc629071a96d3f26c97a2606e709efc4dfaebedbd10626f40c88b82a833743</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>active contour</topic><topic>Adaptive optics</topic><topic>body segmentation</topic><topic>Computer vision</topic><topic>Humans</topic><topic>Image motion analysis</topic><topic>Image segmentation</topic><topic>Motion segmentation</topic><topic>optical flow</topic><topic>Optical imaging</topic><topic>video surveillance</topic><toplevel>online_resources</toplevel><creatorcontrib>Siddiqi, M. H.</creatorcontrib><creatorcontrib>Phan Tran Ho Truc</creatorcontrib><creatorcontrib>Sungyoung Lee</creatorcontrib><creatorcontrib>Young-Koo Lee</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Siddiqi, M. H.</au><au>Phan Tran Ho Truc</au><au>Sungyoung Lee</au><au>Young-Koo Lee</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automatic human body segmentation using level-set based active contours followed by optical flow in video surveillance</atitle><btitle>2011 IEEE 7th International Conference on Intelligent Computer Communication and Processing</btitle><stitle>ICCP</stitle><date>2011-08</date><risdate>2011</risdate><spage>361</spage><epage>364</epage><pages>361-364</pages><isbn>1457714795</isbn><isbn>9781457714795</isbn><eisbn>9781457714818</eisbn><eisbn>1457714817</eisbn><abstract>Human body segmentation is a critical module in video-based activity recognition (AR) because it defines the image area necessary and sufficient for the follow-up modules like feature extraction. Existing methods often involve modeling of the human body and/or the background, which normally requires extensive amount of training data and cannot efficiently handle changes over time. Recently, active contours have been emerging as an effective segmentation technique in still images. In this paper, an active contour model is adapted that is robust to illumination and clothing changes, typical issues in practical AR systems. To make the model work smoothly with video data, the optical flow is used, which is estimated in two consecutive frames, to position the initial contour in the current frame. The proposed approach is unsupervised, i.e., no training data or prior human model is needed. The proposed model gives prominent results of segmentation.</abstract><pub>IEEE</pub><doi>10.1109/ICCP.2011.6047897</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1457714795 |
ispartof | 2011 IEEE 7th International Conference on Intelligent Computer Communication and Processing, 2011, p.361-364 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6047897 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | active contour Adaptive optics body segmentation Computer vision Humans Image motion analysis Image segmentation Motion segmentation optical flow Optical imaging video surveillance |
title | Automatic human body segmentation using level-set based active contours followed by optical flow in video surveillance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A42%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automatic%20human%20body%20segmentation%20using%20level-set%20based%20active%20contours%20followed%20by%20optical%20flow%20in%20video%20surveillance&rft.btitle=2011%20IEEE%207th%20International%20Conference%20on%20Intelligent%20Computer%20Communication%20and%20Processing&rft.au=Siddiqi,%20M.%20H.&rft.date=2011-08&rft.spage=361&rft.epage=364&rft.pages=361-364&rft.isbn=1457714795&rft.isbn_list=9781457714795&rft_id=info:doi/10.1109/ICCP.2011.6047897&rft_dat=%3Cieee_6IE%3E6047897%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457714818&rft.eisbn_list=1457714817&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6047897&rfr_iscdi=true |