Voltage-Drop Aware Analytical Placement by Global Power Spreading for Mixed-Size Circuit Designs

Excessive supply voltage drops in a circuit may lead to significant circuit performance degradation and even malfunction. To handle this problem, existing power delivery aware placement algorithms model voltage drops as an optimization objective. We observe that directly minimizing the voltage drops...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems 2011-11, Vol.30 (11), p.1649-1662
Hauptverfasser: Chuang, Yi-Lin, Lee, Po-Wei, Chang, Yao-Wen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1662
container_issue 11
container_start_page 1649
container_title IEEE transactions on computer-aided design of integrated circuits and systems
container_volume 30
creator Chuang, Yi-Lin
Lee, Po-Wei
Chang, Yao-Wen
description Excessive supply voltage drops in a circuit may lead to significant circuit performance degradation and even malfunction. To handle this problem, existing power delivery aware placement algorithms model voltage drops as an optimization objective. We observe that directly minimizing the voltage drops in the objective function might not resolve voltage-drop violations effectively and might cause problems in power-integrity convergence. To remedy this deficiency, in this paper, we propose new techniques to incorporate device power spreading forces into a mixed-size analytical placement framework. Unlike the state-of-the-art previous work that handles the worst voltage-drop spots one by one, our approach simultaneously and globally spreads all the blocks with voltage-drop violations to desired locations directly to minimize the violations. To apply the power force, we model macro current density and power rails for our placement framework to derive desired macro/cell locations. To further improve the solution quality, we propose an efficient mathematical transformation to adjust the power force direction and magnitude. Experimental results show that our approach can substantially improve the voltage drops, wirelength, and runtime over the previous work.
doi_str_mv 10.1109/TCAD.2011.2163071
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6046166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6046166</ieee_id><sourcerecordid>2488599071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-a08798462c7a62d2952546d79d58a32aaddc267379cd67a084088e853d5bc6583</originalsourceid><addsrcrecordid>eNpdkEtrGzEUhUVpoM7jB5RuRFfZjKMrjV5LY6dpISGBJN2qsnRtFMYjVxqTuL--Yxy66OrC4TsH7kfIZ2BTAGavnuazxZQzgCkHJZiGD2QCVuimBQkfyYRxbRrGNPtETmt9YQxaye2E_PqZu8GvsVmUvKWzV1-Qznrf7YcUfEcfOh9wg_1Al3t60-XlIcuvWOjjtqCPqV_TVS70Lr1hbB7TH6TzVMIuDXSBNa37ek5OVr6rePF-z8jzt-un-ffm9v7mx3x22wTB5dB4ZrQ1reJBe8Ujt5LLVkVtozRecO9jDFxpoW2ISo90y4xBI0WUy6CkEWfk8ri7Lfn3DuvgNqkG7DrfY95VB0qDADsOj-jX_9CXvCvj09UZa4zghrMRgiMUSq614MptS9r4snfA3EG5Oyh3B-XuXfnY-XLsJET8xyvWKlBK_AUy9XsM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>898832820</pqid></control><display><type>article</type><title>Voltage-Drop Aware Analytical Placement by Global Power Spreading for Mixed-Size Circuit Designs</title><source>IEEE Electronic Library (IEL)</source><creator>Chuang, Yi-Lin ; Lee, Po-Wei ; Chang, Yao-Wen</creator><creatorcontrib>Chuang, Yi-Lin ; Lee, Po-Wei ; Chang, Yao-Wen</creatorcontrib><description>Excessive supply voltage drops in a circuit may lead to significant circuit performance degradation and even malfunction. To handle this problem, existing power delivery aware placement algorithms model voltage drops as an optimization objective. We observe that directly minimizing the voltage drops in the objective function might not resolve voltage-drop violations effectively and might cause problems in power-integrity convergence. To remedy this deficiency, in this paper, we propose new techniques to incorporate device power spreading forces into a mixed-size analytical placement framework. Unlike the state-of-the-art previous work that handles the worst voltage-drop spots one by one, our approach simultaneously and globally spreads all the blocks with voltage-drop violations to desired locations directly to minimize the violations. To apply the power force, we model macro current density and power rails for our placement framework to derive desired macro/cell locations. To further improve the solution quality, we propose an efficient mathematical transformation to adjust the power force direction and magnitude. Experimental results show that our approach can substantially improve the voltage drops, wirelength, and runtime over the previous work.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2011.2163071</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; Circuit design ; Design for quality ; Electric potential ; Handles ; Integrated circuit modeling ; Layout ; Mathematical analysis ; Mathematical model ; Mathematical models ; Optimization ; physical design ; Placement ; power ; Spreading ; Studies ; Violations ; Voltage control ; Voltage drop</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2011-11, Vol.30 (11), p.1649-1662</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-a08798462c7a62d2952546d79d58a32aaddc267379cd67a084088e853d5bc6583</citedby><cites>FETCH-LOGICAL-c325t-a08798462c7a62d2952546d79d58a32aaddc267379cd67a084088e853d5bc6583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6046166$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6046166$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chuang, Yi-Lin</creatorcontrib><creatorcontrib>Lee, Po-Wei</creatorcontrib><creatorcontrib>Chang, Yao-Wen</creatorcontrib><title>Voltage-Drop Aware Analytical Placement by Global Power Spreading for Mixed-Size Circuit Designs</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>Excessive supply voltage drops in a circuit may lead to significant circuit performance degradation and even malfunction. To handle this problem, existing power delivery aware placement algorithms model voltage drops as an optimization objective. We observe that directly minimizing the voltage drops in the objective function might not resolve voltage-drop violations effectively and might cause problems in power-integrity convergence. To remedy this deficiency, in this paper, we propose new techniques to incorporate device power spreading forces into a mixed-size analytical placement framework. Unlike the state-of-the-art previous work that handles the worst voltage-drop spots one by one, our approach simultaneously and globally spreads all the blocks with voltage-drop violations to desired locations directly to minimize the violations. To apply the power force, we model macro current density and power rails for our placement framework to derive desired macro/cell locations. To further improve the solution quality, we propose an efficient mathematical transformation to adjust the power force direction and magnitude. Experimental results show that our approach can substantially improve the voltage drops, wirelength, and runtime over the previous work.</description><subject>Analytical models</subject><subject>Circuit design</subject><subject>Design for quality</subject><subject>Electric potential</subject><subject>Handles</subject><subject>Integrated circuit modeling</subject><subject>Layout</subject><subject>Mathematical analysis</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>physical design</subject><subject>Placement</subject><subject>power</subject><subject>Spreading</subject><subject>Studies</subject><subject>Violations</subject><subject>Voltage control</subject><subject>Voltage drop</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtrGzEUhUVpoM7jB5RuRFfZjKMrjV5LY6dpISGBJN2qsnRtFMYjVxqTuL--Yxy66OrC4TsH7kfIZ2BTAGavnuazxZQzgCkHJZiGD2QCVuimBQkfyYRxbRrGNPtETmt9YQxaye2E_PqZu8GvsVmUvKWzV1-Qznrf7YcUfEcfOh9wg_1Al3t60-XlIcuvWOjjtqCPqV_TVS70Lr1hbB7TH6TzVMIuDXSBNa37ek5OVr6rePF-z8jzt-un-ffm9v7mx3x22wTB5dB4ZrQ1reJBe8Ujt5LLVkVtozRecO9jDFxpoW2ISo90y4xBI0WUy6CkEWfk8ri7Lfn3DuvgNqkG7DrfY95VB0qDADsOj-jX_9CXvCvj09UZa4zghrMRgiMUSq614MptS9r4snfA3EG5Oyh3B-XuXfnY-XLsJET8xyvWKlBK_AUy9XsM</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Chuang, Yi-Lin</creator><creator>Lee, Po-Wei</creator><creator>Chang, Yao-Wen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201111</creationdate><title>Voltage-Drop Aware Analytical Placement by Global Power Spreading for Mixed-Size Circuit Designs</title><author>Chuang, Yi-Lin ; Lee, Po-Wei ; Chang, Yao-Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-a08798462c7a62d2952546d79d58a32aaddc267379cd67a084088e853d5bc6583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analytical models</topic><topic>Circuit design</topic><topic>Design for quality</topic><topic>Electric potential</topic><topic>Handles</topic><topic>Integrated circuit modeling</topic><topic>Layout</topic><topic>Mathematical analysis</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>physical design</topic><topic>Placement</topic><topic>power</topic><topic>Spreading</topic><topic>Studies</topic><topic>Violations</topic><topic>Voltage control</topic><topic>Voltage drop</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chuang, Yi-Lin</creatorcontrib><creatorcontrib>Lee, Po-Wei</creatorcontrib><creatorcontrib>Chang, Yao-Wen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chuang, Yi-Lin</au><au>Lee, Po-Wei</au><au>Chang, Yao-Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Voltage-Drop Aware Analytical Placement by Global Power Spreading for Mixed-Size Circuit Designs</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2011-11</date><risdate>2011</risdate><volume>30</volume><issue>11</issue><spage>1649</spage><epage>1662</epage><pages>1649-1662</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>Excessive supply voltage drops in a circuit may lead to significant circuit performance degradation and even malfunction. To handle this problem, existing power delivery aware placement algorithms model voltage drops as an optimization objective. We observe that directly minimizing the voltage drops in the objective function might not resolve voltage-drop violations effectively and might cause problems in power-integrity convergence. To remedy this deficiency, in this paper, we propose new techniques to incorporate device power spreading forces into a mixed-size analytical placement framework. Unlike the state-of-the-art previous work that handles the worst voltage-drop spots one by one, our approach simultaneously and globally spreads all the blocks with voltage-drop violations to desired locations directly to minimize the violations. To apply the power force, we model macro current density and power rails for our placement framework to derive desired macro/cell locations. To further improve the solution quality, we propose an efficient mathematical transformation to adjust the power force direction and magnitude. Experimental results show that our approach can substantially improve the voltage drops, wirelength, and runtime over the previous work.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAD.2011.2163071</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0070
ispartof IEEE transactions on computer-aided design of integrated circuits and systems, 2011-11, Vol.30 (11), p.1649-1662
issn 0278-0070
1937-4151
language eng
recordid cdi_ieee_primary_6046166
source IEEE Electronic Library (IEL)
subjects Analytical models
Circuit design
Design for quality
Electric potential
Handles
Integrated circuit modeling
Layout
Mathematical analysis
Mathematical model
Mathematical models
Optimization
physical design
Placement
power
Spreading
Studies
Violations
Voltage control
Voltage drop
title Voltage-Drop Aware Analytical Placement by Global Power Spreading for Mixed-Size Circuit Designs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A23%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Voltage-Drop%20Aware%20Analytical%20Placement%20by%20Global%20Power%20Spreading%20for%20Mixed-Size%20Circuit%20Designs&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Chuang,%20Yi-Lin&rft.date=2011-11&rft.volume=30&rft.issue=11&rft.spage=1649&rft.epage=1662&rft.pages=1649-1662&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2011.2163071&rft_dat=%3Cproquest_RIE%3E2488599071%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=898832820&rft_id=info:pmid/&rft_ieee_id=6046166&rfr_iscdi=true