An Adaptive Differential Evolution Algorithm With Novel Mutation and Crossover Strategies for Global Numerical Optimization
Differential evolution (DE) is one of the most powerful stochastic real parameter optimizers of current interest. In this paper, we propose a new mutation strategy, a fitness- induced parent selection scheme for the binomial crossover of DE, and a simple but effective scheme of adapting two of its m...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cybernetics 2012-04, Vol.42 (2), p.482-500 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 500 |
---|---|
container_issue | 2 |
container_start_page | 482 |
container_title | IEEE transactions on cybernetics |
container_volume | 42 |
creator | Islam, S. M. Das, S. Ghosh, S. Roy, S. Suganthan, P. N. |
description | Differential evolution (DE) is one of the most powerful stochastic real parameter optimizers of current interest. In this paper, we propose a new mutation strategy, a fitness- induced parent selection scheme for the binomial crossover of DE, and a simple but effective scheme of adapting two of its most important control parameters with an objective of achieving improved performance. The new mutation operator, which we call DE/current-to-gr_best/1, js a variant of the classical DE/current-to-best/1 scheme. It uses the best of a group (whose size is q% of the population size) of randomly selected solutions from current generation to perturb the parent (target) vector, unlike DE/current-to-best/1 that always picks the best vector of the entire population to perturb the target vector. In our modified framework of recombination, a biased parent selection scheme has been incorporated by letting each mutant undergo the usual binomial crossover with one of the p top-ranked individuals from the current population and not with the target vector with the same index as used in all variants of DE. A DE variant obtained by integrating the proposed mutation, crossover, and parameter adaptation strategies with the classical DE framework (developed in 1995) is compared with two classical and four state-of-the-art adaptive DE variants over 25 standard numerical benchmarks taken from the IEEE Congress on Evolutionary Computation 2005 competition and special session on real parameter optimization. Our comparative study indicates that the proposed schemes improve the performance of DE by a large magnitude such that it becomes capable of enjoying statistical superiority over the state-of-the-art DE variants for a wide variety of test problems. Finally, we experimentally demonstrate that, if one or more of our proposed strategies are integrated with existing powerful DE variants such as jDE and JADE, their performances can also be enhanced. |
doi_str_mv | 10.1109/TSMCB.2011.2167966 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6046144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6046144</ieee_id><sourcerecordid>1671477231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-20e5a9cbb14e72109fb765d987df392c9a9388bae2fc4d499cdf146df9eb58ab3</originalsourceid><addsrcrecordid>eNp9kcluFDEQhi0EIgu8AEjI4gKXHrz14uMwhICU5ZAgjpa7uxwcdbcH2z0S4eWpWciBAxe7VPX9Var6CXnF2YJzpj_c3lyuPi4E43wheFXrqnpCjrlWvGBKi6cYs0YWSnF9RE5SumeMaabr5-RIoIjxUh6T38uJLnu7zn4D9JN3DiJM2duBnm3CMGcfsD7chejzj5F-x5dehQ0M9HLOdle1U09XMaSE6UhvcrQZ7jwk6kKk50NosdfVPEL0HUbXOGn0DzvpC_LM2SHBy8N_Sr59PrtdfSkurs-_rpYXRackz4VgUFrdtS1XUAtc3LV1Vfa6qXsntei01bJpWgvCdapXWne946rqnYa2bGwrT8m7fd91DD9nSNmMPnUwDHaCMCejpRI1KyuJ5Pv_knhlrupaSI7o23_Q-zDHCfcwWmiOV28EQmIPddsDRXBmHf1o4y_Dmdl6aHYemq2H5uAhit4cOs_tCP2j5K9pCLzeAx4AHssVUxWOlX8A2UahrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>929144182</pqid></control><display><type>article</type><title>An Adaptive Differential Evolution Algorithm With Novel Mutation and Crossover Strategies for Global Numerical Optimization</title><source>IEEE Electronic Library (IEL)</source><creator>Islam, S. M. ; Das, S. ; Ghosh, S. ; Roy, S. ; Suganthan, P. N.</creator><creatorcontrib>Islam, S. M. ; Das, S. ; Ghosh, S. ; Roy, S. ; Suganthan, P. N.</creatorcontrib><description>Differential evolution (DE) is one of the most powerful stochastic real parameter optimizers of current interest. In this paper, we propose a new mutation strategy, a fitness- induced parent selection scheme for the binomial crossover of DE, and a simple but effective scheme of adapting two of its most important control parameters with an objective of achieving improved performance. The new mutation operator, which we call DE/current-to-gr_best/1, js a variant of the classical DE/current-to-best/1 scheme. It uses the best of a group (whose size is q% of the population size) of randomly selected solutions from current generation to perturb the parent (target) vector, unlike DE/current-to-best/1 that always picks the best vector of the entire population to perturb the target vector. In our modified framework of recombination, a biased parent selection scheme has been incorporated by letting each mutant undergo the usual binomial crossover with one of the p top-ranked individuals from the current population and not with the target vector with the same index as used in all variants of DE. A DE variant obtained by integrating the proposed mutation, crossover, and parameter adaptation strategies with the classical DE framework (developed in 1995) is compared with two classical and four state-of-the-art adaptive DE variants over 25 standard numerical benchmarks taken from the IEEE Congress on Evolutionary Computation 2005 competition and special session on real parameter optimization. Our comparative study indicates that the proposed schemes improve the performance of DE by a large magnitude such that it becomes capable of enjoying statistical superiority over the state-of-the-art DE variants for a wide variety of test problems. Finally, we experimentally demonstrate that, if one or more of our proposed strategies are integrated with existing powerful DE variants such as jDE and JADE, their performances can also be enhanced.</description><identifier>ISSN: 1083-4419</identifier><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 1941-0492</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TSMCB.2011.2167966</identifier><identifier>PMID: 22010153</identifier><identifier>CODEN: ITSCFI</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Benchmark testing ; Convergence ; Crossovers ; Derivative-free optimization ; differential evolution (DE) ; evolutionary algorithms (EAs) ; Evolutionary computation ; Frequency modulation ; Gaussian distribution ; genetic algorithms (GAs) ; Indexes ; Mathematical analysis ; Mathematical models ; Mutation ; Mutations ; Optimization ; parameter adaptation ; Parents ; particle swarm optimization (PSO) ; State of the art ; Strategy ; Vectors (mathematics)</subject><ispartof>IEEE transactions on cybernetics, 2012-04, Vol.42 (2), p.482-500</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-20e5a9cbb14e72109fb765d987df392c9a9388bae2fc4d499cdf146df9eb58ab3</citedby><cites>FETCH-LOGICAL-c431t-20e5a9cbb14e72109fb765d987df392c9a9388bae2fc4d499cdf146df9eb58ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6046144$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6046144$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22010153$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Islam, S. M.</creatorcontrib><creatorcontrib>Das, S.</creatorcontrib><creatorcontrib>Ghosh, S.</creatorcontrib><creatorcontrib>Roy, S.</creatorcontrib><creatorcontrib>Suganthan, P. N.</creatorcontrib><title>An Adaptive Differential Evolution Algorithm With Novel Mutation and Crossover Strategies for Global Numerical Optimization</title><title>IEEE transactions on cybernetics</title><addtitle>TSMCB</addtitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><description>Differential evolution (DE) is one of the most powerful stochastic real parameter optimizers of current interest. In this paper, we propose a new mutation strategy, a fitness- induced parent selection scheme for the binomial crossover of DE, and a simple but effective scheme of adapting two of its most important control parameters with an objective of achieving improved performance. The new mutation operator, which we call DE/current-to-gr_best/1, js a variant of the classical DE/current-to-best/1 scheme. It uses the best of a group (whose size is q% of the population size) of randomly selected solutions from current generation to perturb the parent (target) vector, unlike DE/current-to-best/1 that always picks the best vector of the entire population to perturb the target vector. In our modified framework of recombination, a biased parent selection scheme has been incorporated by letting each mutant undergo the usual binomial crossover with one of the p top-ranked individuals from the current population and not with the target vector with the same index as used in all variants of DE. A DE variant obtained by integrating the proposed mutation, crossover, and parameter adaptation strategies with the classical DE framework (developed in 1995) is compared with two classical and four state-of-the-art adaptive DE variants over 25 standard numerical benchmarks taken from the IEEE Congress on Evolutionary Computation 2005 competition and special session on real parameter optimization. Our comparative study indicates that the proposed schemes improve the performance of DE by a large magnitude such that it becomes capable of enjoying statistical superiority over the state-of-the-art DE variants for a wide variety of test problems. Finally, we experimentally demonstrate that, if one or more of our proposed strategies are integrated with existing powerful DE variants such as jDE and JADE, their performances can also be enhanced.</description><subject>Benchmark testing</subject><subject>Convergence</subject><subject>Crossovers</subject><subject>Derivative-free optimization</subject><subject>differential evolution (DE)</subject><subject>evolutionary algorithms (EAs)</subject><subject>Evolutionary computation</subject><subject>Frequency modulation</subject><subject>Gaussian distribution</subject><subject>genetic algorithms (GAs)</subject><subject>Indexes</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mutation</subject><subject>Mutations</subject><subject>Optimization</subject><subject>parameter adaptation</subject><subject>Parents</subject><subject>particle swarm optimization (PSO)</subject><subject>State of the art</subject><subject>Strategy</subject><subject>Vectors (mathematics)</subject><issn>1083-4419</issn><issn>2168-2267</issn><issn>1941-0492</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kcluFDEQhi0EIgu8AEjI4gKXHrz14uMwhICU5ZAgjpa7uxwcdbcH2z0S4eWpWciBAxe7VPX9Var6CXnF2YJzpj_c3lyuPi4E43wheFXrqnpCjrlWvGBKi6cYs0YWSnF9RE5SumeMaabr5-RIoIjxUh6T38uJLnu7zn4D9JN3DiJM2duBnm3CMGcfsD7chejzj5F-x5dehQ0M9HLOdle1U09XMaSE6UhvcrQZ7jwk6kKk50NosdfVPEL0HUbXOGn0DzvpC_LM2SHBy8N_Sr59PrtdfSkurs-_rpYXRackz4VgUFrdtS1XUAtc3LV1Vfa6qXsntei01bJpWgvCdapXWne946rqnYa2bGwrT8m7fd91DD9nSNmMPnUwDHaCMCejpRI1KyuJ5Pv_knhlrupaSI7o23_Q-zDHCfcwWmiOV28EQmIPddsDRXBmHf1o4y_Dmdl6aHYemq2H5uAhit4cOs_tCP2j5K9pCLzeAx4AHssVUxWOlX8A2UahrQ</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Islam, S. M.</creator><creator>Das, S.</creator><creator>Ghosh, S.</creator><creator>Roy, S.</creator><creator>Suganthan, P. N.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>201204</creationdate><title>An Adaptive Differential Evolution Algorithm With Novel Mutation and Crossover Strategies for Global Numerical Optimization</title><author>Islam, S. M. ; Das, S. ; Ghosh, S. ; Roy, S. ; Suganthan, P. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-20e5a9cbb14e72109fb765d987df392c9a9388bae2fc4d499cdf146df9eb58ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Benchmark testing</topic><topic>Convergence</topic><topic>Crossovers</topic><topic>Derivative-free optimization</topic><topic>differential evolution (DE)</topic><topic>evolutionary algorithms (EAs)</topic><topic>Evolutionary computation</topic><topic>Frequency modulation</topic><topic>Gaussian distribution</topic><topic>genetic algorithms (GAs)</topic><topic>Indexes</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mutation</topic><topic>Mutations</topic><topic>Optimization</topic><topic>parameter adaptation</topic><topic>Parents</topic><topic>particle swarm optimization (PSO)</topic><topic>State of the art</topic><topic>Strategy</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Islam, S. M.</creatorcontrib><creatorcontrib>Das, S.</creatorcontrib><creatorcontrib>Ghosh, S.</creatorcontrib><creatorcontrib>Roy, S.</creatorcontrib><creatorcontrib>Suganthan, P. N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Islam, S. M.</au><au>Das, S.</au><au>Ghosh, S.</au><au>Roy, S.</au><au>Suganthan, P. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Adaptive Differential Evolution Algorithm With Novel Mutation and Crossover Strategies for Global Numerical Optimization</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TSMCB</stitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><date>2012-04</date><risdate>2012</risdate><volume>42</volume><issue>2</issue><spage>482</spage><epage>500</epage><pages>482-500</pages><issn>1083-4419</issn><issn>2168-2267</issn><eissn>1941-0492</eissn><eissn>2168-2275</eissn><coden>ITSCFI</coden><abstract>Differential evolution (DE) is one of the most powerful stochastic real parameter optimizers of current interest. In this paper, we propose a new mutation strategy, a fitness- induced parent selection scheme for the binomial crossover of DE, and a simple but effective scheme of adapting two of its most important control parameters with an objective of achieving improved performance. The new mutation operator, which we call DE/current-to-gr_best/1, js a variant of the classical DE/current-to-best/1 scheme. It uses the best of a group (whose size is q% of the population size) of randomly selected solutions from current generation to perturb the parent (target) vector, unlike DE/current-to-best/1 that always picks the best vector of the entire population to perturb the target vector. In our modified framework of recombination, a biased parent selection scheme has been incorporated by letting each mutant undergo the usual binomial crossover with one of the p top-ranked individuals from the current population and not with the target vector with the same index as used in all variants of DE. A DE variant obtained by integrating the proposed mutation, crossover, and parameter adaptation strategies with the classical DE framework (developed in 1995) is compared with two classical and four state-of-the-art adaptive DE variants over 25 standard numerical benchmarks taken from the IEEE Congress on Evolutionary Computation 2005 competition and special session on real parameter optimization. Our comparative study indicates that the proposed schemes improve the performance of DE by a large magnitude such that it becomes capable of enjoying statistical superiority over the state-of-the-art DE variants for a wide variety of test problems. Finally, we experimentally demonstrate that, if one or more of our proposed strategies are integrated with existing powerful DE variants such as jDE and JADE, their performances can also be enhanced.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>22010153</pmid><doi>10.1109/TSMCB.2011.2167966</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1083-4419 |
ispartof | IEEE transactions on cybernetics, 2012-04, Vol.42 (2), p.482-500 |
issn | 1083-4419 2168-2267 1941-0492 2168-2275 |
language | eng |
recordid | cdi_ieee_primary_6046144 |
source | IEEE Electronic Library (IEL) |
subjects | Benchmark testing Convergence Crossovers Derivative-free optimization differential evolution (DE) evolutionary algorithms (EAs) Evolutionary computation Frequency modulation Gaussian distribution genetic algorithms (GAs) Indexes Mathematical analysis Mathematical models Mutation Mutations Optimization parameter adaptation Parents particle swarm optimization (PSO) State of the art Strategy Vectors (mathematics) |
title | An Adaptive Differential Evolution Algorithm With Novel Mutation and Crossover Strategies for Global Numerical Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A36%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Adaptive%20Differential%20Evolution%20Algorithm%20With%20Novel%20Mutation%20and%20Crossover%20Strategies%20for%20Global%20Numerical%20Optimization&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Islam,%20S.%20M.&rft.date=2012-04&rft.volume=42&rft.issue=2&rft.spage=482&rft.epage=500&rft.pages=482-500&rft.issn=1083-4419&rft.eissn=1941-0492&rft.coden=ITSCFI&rft_id=info:doi/10.1109/TSMCB.2011.2167966&rft_dat=%3Cproquest_RIE%3E1671477231%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=929144182&rft_id=info:pmid/22010153&rft_ieee_id=6046144&rfr_iscdi=true |