An Adaptive Differential Evolution Algorithm With Novel Mutation and Crossover Strategies for Global Numerical Optimization

Differential evolution (DE) is one of the most powerful stochastic real parameter optimizers of current interest. In this paper, we propose a new mutation strategy, a fitness- induced parent selection scheme for the binomial crossover of DE, and a simple but effective scheme of adapting two of its m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2012-04, Vol.42 (2), p.482-500
Hauptverfasser: Islam, S. M., Das, S., Ghosh, S., Roy, S., Suganthan, P. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 500
container_issue 2
container_start_page 482
container_title IEEE transactions on cybernetics
container_volume 42
creator Islam, S. M.
Das, S.
Ghosh, S.
Roy, S.
Suganthan, P. N.
description Differential evolution (DE) is one of the most powerful stochastic real parameter optimizers of current interest. In this paper, we propose a new mutation strategy, a fitness- induced parent selection scheme for the binomial crossover of DE, and a simple but effective scheme of adapting two of its most important control parameters with an objective of achieving improved performance. The new mutation operator, which we call DE/current-to-gr_best/1, js a variant of the classical DE/current-to-best/1 scheme. It uses the best of a group (whose size is q% of the population size) of randomly selected solutions from current generation to perturb the parent (target) vector, unlike DE/current-to-best/1 that always picks the best vector of the entire population to perturb the target vector. In our modified framework of recombination, a biased parent selection scheme has been incorporated by letting each mutant undergo the usual binomial crossover with one of the p top-ranked individuals from the current population and not with the target vector with the same index as used in all variants of DE. A DE variant obtained by integrating the proposed mutation, crossover, and parameter adaptation strategies with the classical DE framework (developed in 1995) is compared with two classical and four state-of-the-art adaptive DE variants over 25 standard numerical benchmarks taken from the IEEE Congress on Evolutionary Computation 2005 competition and special session on real parameter optimization. Our comparative study indicates that the proposed schemes improve the performance of DE by a large magnitude such that it becomes capable of enjoying statistical superiority over the state-of-the-art DE variants for a wide variety of test problems. Finally, we experimentally demonstrate that, if one or more of our proposed strategies are integrated with existing powerful DE variants such as jDE and JADE, their performances can also be enhanced.
doi_str_mv 10.1109/TSMCB.2011.2167966
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6046144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6046144</ieee_id><sourcerecordid>1671477231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-20e5a9cbb14e72109fb765d987df392c9a9388bae2fc4d499cdf146df9eb58ab3</originalsourceid><addsrcrecordid>eNp9kcluFDEQhi0EIgu8AEjI4gKXHrz14uMwhICU5ZAgjpa7uxwcdbcH2z0S4eWpWciBAxe7VPX9Var6CXnF2YJzpj_c3lyuPi4E43wheFXrqnpCjrlWvGBKi6cYs0YWSnF9RE5SumeMaabr5-RIoIjxUh6T38uJLnu7zn4D9JN3DiJM2duBnm3CMGcfsD7chejzj5F-x5dehQ0M9HLOdle1U09XMaSE6UhvcrQZ7jwk6kKk50NosdfVPEL0HUbXOGn0DzvpC_LM2SHBy8N_Sr59PrtdfSkurs-_rpYXRackz4VgUFrdtS1XUAtc3LV1Vfa6qXsntei01bJpWgvCdapXWne946rqnYa2bGwrT8m7fd91DD9nSNmMPnUwDHaCMCejpRI1KyuJ5Pv_knhlrupaSI7o23_Q-zDHCfcwWmiOV28EQmIPddsDRXBmHf1o4y_Dmdl6aHYemq2H5uAhit4cOs_tCP2j5K9pCLzeAx4AHssVUxWOlX8A2UahrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>929144182</pqid></control><display><type>article</type><title>An Adaptive Differential Evolution Algorithm With Novel Mutation and Crossover Strategies for Global Numerical Optimization</title><source>IEEE Electronic Library (IEL)</source><creator>Islam, S. M. ; Das, S. ; Ghosh, S. ; Roy, S. ; Suganthan, P. N.</creator><creatorcontrib>Islam, S. M. ; Das, S. ; Ghosh, S. ; Roy, S. ; Suganthan, P. N.</creatorcontrib><description>Differential evolution (DE) is one of the most powerful stochastic real parameter optimizers of current interest. In this paper, we propose a new mutation strategy, a fitness- induced parent selection scheme for the binomial crossover of DE, and a simple but effective scheme of adapting two of its most important control parameters with an objective of achieving improved performance. The new mutation operator, which we call DE/current-to-gr_best/1, js a variant of the classical DE/current-to-best/1 scheme. It uses the best of a group (whose size is q% of the population size) of randomly selected solutions from current generation to perturb the parent (target) vector, unlike DE/current-to-best/1 that always picks the best vector of the entire population to perturb the target vector. In our modified framework of recombination, a biased parent selection scheme has been incorporated by letting each mutant undergo the usual binomial crossover with one of the p top-ranked individuals from the current population and not with the target vector with the same index as used in all variants of DE. A DE variant obtained by integrating the proposed mutation, crossover, and parameter adaptation strategies with the classical DE framework (developed in 1995) is compared with two classical and four state-of-the-art adaptive DE variants over 25 standard numerical benchmarks taken from the IEEE Congress on Evolutionary Computation 2005 competition and special session on real parameter optimization. Our comparative study indicates that the proposed schemes improve the performance of DE by a large magnitude such that it becomes capable of enjoying statistical superiority over the state-of-the-art DE variants for a wide variety of test problems. Finally, we experimentally demonstrate that, if one or more of our proposed strategies are integrated with existing powerful DE variants such as jDE and JADE, their performances can also be enhanced.</description><identifier>ISSN: 1083-4419</identifier><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 1941-0492</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TSMCB.2011.2167966</identifier><identifier>PMID: 22010153</identifier><identifier>CODEN: ITSCFI</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Benchmark testing ; Convergence ; Crossovers ; Derivative-free optimization ; differential evolution (DE) ; evolutionary algorithms (EAs) ; Evolutionary computation ; Frequency modulation ; Gaussian distribution ; genetic algorithms (GAs) ; Indexes ; Mathematical analysis ; Mathematical models ; Mutation ; Mutations ; Optimization ; parameter adaptation ; Parents ; particle swarm optimization (PSO) ; State of the art ; Strategy ; Vectors (mathematics)</subject><ispartof>IEEE transactions on cybernetics, 2012-04, Vol.42 (2), p.482-500</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-20e5a9cbb14e72109fb765d987df392c9a9388bae2fc4d499cdf146df9eb58ab3</citedby><cites>FETCH-LOGICAL-c431t-20e5a9cbb14e72109fb765d987df392c9a9388bae2fc4d499cdf146df9eb58ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6046144$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6046144$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22010153$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Islam, S. M.</creatorcontrib><creatorcontrib>Das, S.</creatorcontrib><creatorcontrib>Ghosh, S.</creatorcontrib><creatorcontrib>Roy, S.</creatorcontrib><creatorcontrib>Suganthan, P. N.</creatorcontrib><title>An Adaptive Differential Evolution Algorithm With Novel Mutation and Crossover Strategies for Global Numerical Optimization</title><title>IEEE transactions on cybernetics</title><addtitle>TSMCB</addtitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><description>Differential evolution (DE) is one of the most powerful stochastic real parameter optimizers of current interest. In this paper, we propose a new mutation strategy, a fitness- induced parent selection scheme for the binomial crossover of DE, and a simple but effective scheme of adapting two of its most important control parameters with an objective of achieving improved performance. The new mutation operator, which we call DE/current-to-gr_best/1, js a variant of the classical DE/current-to-best/1 scheme. It uses the best of a group (whose size is q% of the population size) of randomly selected solutions from current generation to perturb the parent (target) vector, unlike DE/current-to-best/1 that always picks the best vector of the entire population to perturb the target vector. In our modified framework of recombination, a biased parent selection scheme has been incorporated by letting each mutant undergo the usual binomial crossover with one of the p top-ranked individuals from the current population and not with the target vector with the same index as used in all variants of DE. A DE variant obtained by integrating the proposed mutation, crossover, and parameter adaptation strategies with the classical DE framework (developed in 1995) is compared with two classical and four state-of-the-art adaptive DE variants over 25 standard numerical benchmarks taken from the IEEE Congress on Evolutionary Computation 2005 competition and special session on real parameter optimization. Our comparative study indicates that the proposed schemes improve the performance of DE by a large magnitude such that it becomes capable of enjoying statistical superiority over the state-of-the-art DE variants for a wide variety of test problems. Finally, we experimentally demonstrate that, if one or more of our proposed strategies are integrated with existing powerful DE variants such as jDE and JADE, their performances can also be enhanced.</description><subject>Benchmark testing</subject><subject>Convergence</subject><subject>Crossovers</subject><subject>Derivative-free optimization</subject><subject>differential evolution (DE)</subject><subject>evolutionary algorithms (EAs)</subject><subject>Evolutionary computation</subject><subject>Frequency modulation</subject><subject>Gaussian distribution</subject><subject>genetic algorithms (GAs)</subject><subject>Indexes</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mutation</subject><subject>Mutations</subject><subject>Optimization</subject><subject>parameter adaptation</subject><subject>Parents</subject><subject>particle swarm optimization (PSO)</subject><subject>State of the art</subject><subject>Strategy</subject><subject>Vectors (mathematics)</subject><issn>1083-4419</issn><issn>2168-2267</issn><issn>1941-0492</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kcluFDEQhi0EIgu8AEjI4gKXHrz14uMwhICU5ZAgjpa7uxwcdbcH2z0S4eWpWciBAxe7VPX9Var6CXnF2YJzpj_c3lyuPi4E43wheFXrqnpCjrlWvGBKi6cYs0YWSnF9RE5SumeMaabr5-RIoIjxUh6T38uJLnu7zn4D9JN3DiJM2duBnm3CMGcfsD7chejzj5F-x5dehQ0M9HLOdle1U09XMaSE6UhvcrQZ7jwk6kKk50NosdfVPEL0HUbXOGn0DzvpC_LM2SHBy8N_Sr59PrtdfSkurs-_rpYXRackz4VgUFrdtS1XUAtc3LV1Vfa6qXsntei01bJpWgvCdapXWne946rqnYa2bGwrT8m7fd91DD9nSNmMPnUwDHaCMCejpRI1KyuJ5Pv_knhlrupaSI7o23_Q-zDHCfcwWmiOV28EQmIPddsDRXBmHf1o4y_Dmdl6aHYemq2H5uAhit4cOs_tCP2j5K9pCLzeAx4AHssVUxWOlX8A2UahrQ</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Islam, S. M.</creator><creator>Das, S.</creator><creator>Ghosh, S.</creator><creator>Roy, S.</creator><creator>Suganthan, P. N.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>201204</creationdate><title>An Adaptive Differential Evolution Algorithm With Novel Mutation and Crossover Strategies for Global Numerical Optimization</title><author>Islam, S. M. ; Das, S. ; Ghosh, S. ; Roy, S. ; Suganthan, P. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-20e5a9cbb14e72109fb765d987df392c9a9388bae2fc4d499cdf146df9eb58ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Benchmark testing</topic><topic>Convergence</topic><topic>Crossovers</topic><topic>Derivative-free optimization</topic><topic>differential evolution (DE)</topic><topic>evolutionary algorithms (EAs)</topic><topic>Evolutionary computation</topic><topic>Frequency modulation</topic><topic>Gaussian distribution</topic><topic>genetic algorithms (GAs)</topic><topic>Indexes</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mutation</topic><topic>Mutations</topic><topic>Optimization</topic><topic>parameter adaptation</topic><topic>Parents</topic><topic>particle swarm optimization (PSO)</topic><topic>State of the art</topic><topic>Strategy</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Islam, S. M.</creatorcontrib><creatorcontrib>Das, S.</creatorcontrib><creatorcontrib>Ghosh, S.</creatorcontrib><creatorcontrib>Roy, S.</creatorcontrib><creatorcontrib>Suganthan, P. N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Islam, S. M.</au><au>Das, S.</au><au>Ghosh, S.</au><au>Roy, S.</au><au>Suganthan, P. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Adaptive Differential Evolution Algorithm With Novel Mutation and Crossover Strategies for Global Numerical Optimization</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TSMCB</stitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><date>2012-04</date><risdate>2012</risdate><volume>42</volume><issue>2</issue><spage>482</spage><epage>500</epage><pages>482-500</pages><issn>1083-4419</issn><issn>2168-2267</issn><eissn>1941-0492</eissn><eissn>2168-2275</eissn><coden>ITSCFI</coden><abstract>Differential evolution (DE) is one of the most powerful stochastic real parameter optimizers of current interest. In this paper, we propose a new mutation strategy, a fitness- induced parent selection scheme for the binomial crossover of DE, and a simple but effective scheme of adapting two of its most important control parameters with an objective of achieving improved performance. The new mutation operator, which we call DE/current-to-gr_best/1, js a variant of the classical DE/current-to-best/1 scheme. It uses the best of a group (whose size is q% of the population size) of randomly selected solutions from current generation to perturb the parent (target) vector, unlike DE/current-to-best/1 that always picks the best vector of the entire population to perturb the target vector. In our modified framework of recombination, a biased parent selection scheme has been incorporated by letting each mutant undergo the usual binomial crossover with one of the p top-ranked individuals from the current population and not with the target vector with the same index as used in all variants of DE. A DE variant obtained by integrating the proposed mutation, crossover, and parameter adaptation strategies with the classical DE framework (developed in 1995) is compared with two classical and four state-of-the-art adaptive DE variants over 25 standard numerical benchmarks taken from the IEEE Congress on Evolutionary Computation 2005 competition and special session on real parameter optimization. Our comparative study indicates that the proposed schemes improve the performance of DE by a large magnitude such that it becomes capable of enjoying statistical superiority over the state-of-the-art DE variants for a wide variety of test problems. Finally, we experimentally demonstrate that, if one or more of our proposed strategies are integrated with existing powerful DE variants such as jDE and JADE, their performances can also be enhanced.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>22010153</pmid><doi>10.1109/TSMCB.2011.2167966</doi><tpages>19</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1083-4419
ispartof IEEE transactions on cybernetics, 2012-04, Vol.42 (2), p.482-500
issn 1083-4419
2168-2267
1941-0492
2168-2275
language eng
recordid cdi_ieee_primary_6046144
source IEEE Electronic Library (IEL)
subjects Benchmark testing
Convergence
Crossovers
Derivative-free optimization
differential evolution (DE)
evolutionary algorithms (EAs)
Evolutionary computation
Frequency modulation
Gaussian distribution
genetic algorithms (GAs)
Indexes
Mathematical analysis
Mathematical models
Mutation
Mutations
Optimization
parameter adaptation
Parents
particle swarm optimization (PSO)
State of the art
Strategy
Vectors (mathematics)
title An Adaptive Differential Evolution Algorithm With Novel Mutation and Crossover Strategies for Global Numerical Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A36%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Adaptive%20Differential%20Evolution%20Algorithm%20With%20Novel%20Mutation%20and%20Crossover%20Strategies%20for%20Global%20Numerical%20Optimization&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Islam,%20S.%20M.&rft.date=2012-04&rft.volume=42&rft.issue=2&rft.spage=482&rft.epage=500&rft.pages=482-500&rft.issn=1083-4419&rft.eissn=1941-0492&rft.coden=ITSCFI&rft_id=info:doi/10.1109/TSMCB.2011.2167966&rft_dat=%3Cproquest_RIE%3E1671477231%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=929144182&rft_id=info:pmid/22010153&rft_ieee_id=6046144&rfr_iscdi=true