Design of an online tuning modified-grey fuzzy PID controller for nonlinear systems

This paper presents a design of a novel adaptive controller - online tuning modified-Grey fuzzy PID (OTMGFPID) - to deal with nonlinear systems. The OTMGFPID is a combination of a main control unit - online tuning fuzzy PID (OTFPID), and a predictor - online tuning modified-Grey predictor (OTMGP). T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dinh Quang Truong, Kyoung Kwan Ahn, Jong Il Yoon, Maolin Jin, Chin Tae Choi
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 486
container_issue
container_start_page 481
container_title
container_volume
creator Dinh Quang Truong
Kyoung Kwan Ahn
Jong Il Yoon
Maolin Jin
Chin Tae Choi
description This paper presents a design of a novel adaptive controller - online tuning modified-Grey fuzzy PID (OTMGFPID) - to deal with nonlinear systems. The OTMGFPID is a combination of a main control unit - online tuning fuzzy PID (OTFPID), and a predictor - online tuning modified-Grey predictor (OTMGP). The OTFPID controller, which is built from an adaptive proportional-integral-derivative (PID) controller based on an online tuning fuzzy-neural technique and robust checking conditions, is used to drive the system to desired targets. In addition, a smart learning mechanism (SLM) was implemented into the OTFPID in order to optimize smartly its parameters with respect to the control error minimization. The OTMGP with online tuning ability of the predictor step size based fuzzy (FPSS) is used to estimate the actual system output and to create a compensating signal corresponding to the system perturbations. The effectiveness of the proposed OTMGFPID controller has been evaluated by numerical simulations in a comparison with other typical controllers.
doi_str_mv 10.1109/FPM.2011.6045813
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6045813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6045813</ieee_id><sourcerecordid>6045813</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-92fbcee6ae6c81c96a0fb8e88569eb5b8da730af792763abfe75a1026f0ae5f03</originalsourceid><addsrcrecordid>eNpFkMFLwzAYxSMiqHN3wUv-gdYvSZMmR9ncHEwcuPtI2y8l0qaSdIfur3ewge_wHr_De4dHyDODnDEwr6vdZ86BsVxBITUTN-SRFbwodCGB3_4Dg3syT-kHzlLKCGUeyPcSk28DHRy1Zw-dD0jHY_Chpf3QeOexydqIE3XH02miu82S1kMY49B1GKkbIg2Xlo00TWnEPj2RO2e7hPNrzsh-9b5ffGTbr_Vm8bbNvIExM9xVNaKyqGrNaqMsuEqj1lIZrGSlG1sKsK40vFTCVg5LaRlw5cCidCBm5OUy6xHx8Bt9b-N0uH4g_gB1RVFT</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Design of an online tuning modified-grey fuzzy PID controller for nonlinear systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dinh Quang Truong ; Kyoung Kwan Ahn ; Jong Il Yoon ; Maolin Jin ; Chin Tae Choi</creator><creatorcontrib>Dinh Quang Truong ; Kyoung Kwan Ahn ; Jong Il Yoon ; Maolin Jin ; Chin Tae Choi</creatorcontrib><description>This paper presents a design of a novel adaptive controller - online tuning modified-Grey fuzzy PID (OTMGFPID) - to deal with nonlinear systems. The OTMGFPID is a combination of a main control unit - online tuning fuzzy PID (OTFPID), and a predictor - online tuning modified-Grey predictor (OTMGP). The OTFPID controller, which is built from an adaptive proportional-integral-derivative (PID) controller based on an online tuning fuzzy-neural technique and robust checking conditions, is used to drive the system to desired targets. In addition, a smart learning mechanism (SLM) was implemented into the OTFPID in order to optimize smartly its parameters with respect to the control error minimization. The OTMGP with online tuning ability of the predictor step size based fuzzy (FPSS) is used to estimate the actual system output and to create a compensating signal corresponding to the system perturbations. The effectiveness of the proposed OTMGFPID controller has been evaluated by numerical simulations in a comparison with other typical controllers.</description><identifier>ISBN: 1424484510</identifier><identifier>ISBN: 9781424484515</identifier><identifier>EISBN: 1424484502</identifier><identifier>EISBN: 1424484499</identifier><identifier>EISBN: 1424484529</identifier><identifier>EISBN: 9781424484492</identifier><identifier>EISBN: 9781424484508</identifier><identifier>EISBN: 9781424484522</identifier><identifier>DOI: 10.1109/FPM.2011.6045813</identifier><language>eng</language><publisher>IEEE</publisher><subject>Control systems ; fuzzy ; Gain ; Mathematical model ; modified-Grey predictor ; Noise ; nonlinear system ; Nonlinear systems ; PID controller ; smart online tuning ; Tuners</subject><ispartof>Proceedings of 2011 International Conference on Fluid Power and Mechatronics, 2011, p.481-486</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6045813$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6045813$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dinh Quang Truong</creatorcontrib><creatorcontrib>Kyoung Kwan Ahn</creatorcontrib><creatorcontrib>Jong Il Yoon</creatorcontrib><creatorcontrib>Maolin Jin</creatorcontrib><creatorcontrib>Chin Tae Choi</creatorcontrib><title>Design of an online tuning modified-grey fuzzy PID controller for nonlinear systems</title><title>Proceedings of 2011 International Conference on Fluid Power and Mechatronics</title><addtitle>FPM</addtitle><description>This paper presents a design of a novel adaptive controller - online tuning modified-Grey fuzzy PID (OTMGFPID) - to deal with nonlinear systems. The OTMGFPID is a combination of a main control unit - online tuning fuzzy PID (OTFPID), and a predictor - online tuning modified-Grey predictor (OTMGP). The OTFPID controller, which is built from an adaptive proportional-integral-derivative (PID) controller based on an online tuning fuzzy-neural technique and robust checking conditions, is used to drive the system to desired targets. In addition, a smart learning mechanism (SLM) was implemented into the OTFPID in order to optimize smartly its parameters with respect to the control error minimization. The OTMGP with online tuning ability of the predictor step size based fuzzy (FPSS) is used to estimate the actual system output and to create a compensating signal corresponding to the system perturbations. The effectiveness of the proposed OTMGFPID controller has been evaluated by numerical simulations in a comparison with other typical controllers.</description><subject>Control systems</subject><subject>fuzzy</subject><subject>Gain</subject><subject>Mathematical model</subject><subject>modified-Grey predictor</subject><subject>Noise</subject><subject>nonlinear system</subject><subject>Nonlinear systems</subject><subject>PID controller</subject><subject>smart online tuning</subject><subject>Tuners</subject><isbn>1424484510</isbn><isbn>9781424484515</isbn><isbn>1424484502</isbn><isbn>1424484499</isbn><isbn>1424484529</isbn><isbn>9781424484492</isbn><isbn>9781424484508</isbn><isbn>9781424484522</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkMFLwzAYxSMiqHN3wUv-gdYvSZMmR9ncHEwcuPtI2y8l0qaSdIfur3ewge_wHr_De4dHyDODnDEwr6vdZ86BsVxBITUTN-SRFbwodCGB3_4Dg3syT-kHzlLKCGUeyPcSk28DHRy1Zw-dD0jHY_Chpf3QeOexydqIE3XH02miu82S1kMY49B1GKkbIg2Xlo00TWnEPj2RO2e7hPNrzsh-9b5ffGTbr_Vm8bbNvIExM9xVNaKyqGrNaqMsuEqj1lIZrGSlG1sKsK40vFTCVg5LaRlw5cCidCBm5OUy6xHx8Bt9b-N0uH4g_gB1RVFT</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>Dinh Quang Truong</creator><creator>Kyoung Kwan Ahn</creator><creator>Jong Il Yoon</creator><creator>Maolin Jin</creator><creator>Chin Tae Choi</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201108</creationdate><title>Design of an online tuning modified-grey fuzzy PID controller for nonlinear systems</title><author>Dinh Quang Truong ; Kyoung Kwan Ahn ; Jong Il Yoon ; Maolin Jin ; Chin Tae Choi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-92fbcee6ae6c81c96a0fb8e88569eb5b8da730af792763abfe75a1026f0ae5f03</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Control systems</topic><topic>fuzzy</topic><topic>Gain</topic><topic>Mathematical model</topic><topic>modified-Grey predictor</topic><topic>Noise</topic><topic>nonlinear system</topic><topic>Nonlinear systems</topic><topic>PID controller</topic><topic>smart online tuning</topic><topic>Tuners</topic><toplevel>online_resources</toplevel><creatorcontrib>Dinh Quang Truong</creatorcontrib><creatorcontrib>Kyoung Kwan Ahn</creatorcontrib><creatorcontrib>Jong Il Yoon</creatorcontrib><creatorcontrib>Maolin Jin</creatorcontrib><creatorcontrib>Chin Tae Choi</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dinh Quang Truong</au><au>Kyoung Kwan Ahn</au><au>Jong Il Yoon</au><au>Maolin Jin</au><au>Chin Tae Choi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Design of an online tuning modified-grey fuzzy PID controller for nonlinear systems</atitle><btitle>Proceedings of 2011 International Conference on Fluid Power and Mechatronics</btitle><stitle>FPM</stitle><date>2011-08</date><risdate>2011</risdate><spage>481</spage><epage>486</epage><pages>481-486</pages><isbn>1424484510</isbn><isbn>9781424484515</isbn><eisbn>1424484502</eisbn><eisbn>1424484499</eisbn><eisbn>1424484529</eisbn><eisbn>9781424484492</eisbn><eisbn>9781424484508</eisbn><eisbn>9781424484522</eisbn><abstract>This paper presents a design of a novel adaptive controller - online tuning modified-Grey fuzzy PID (OTMGFPID) - to deal with nonlinear systems. The OTMGFPID is a combination of a main control unit - online tuning fuzzy PID (OTFPID), and a predictor - online tuning modified-Grey predictor (OTMGP). The OTFPID controller, which is built from an adaptive proportional-integral-derivative (PID) controller based on an online tuning fuzzy-neural technique and robust checking conditions, is used to drive the system to desired targets. In addition, a smart learning mechanism (SLM) was implemented into the OTFPID in order to optimize smartly its parameters with respect to the control error minimization. The OTMGP with online tuning ability of the predictor step size based fuzzy (FPSS) is used to estimate the actual system output and to create a compensating signal corresponding to the system perturbations. The effectiveness of the proposed OTMGFPID controller has been evaluated by numerical simulations in a comparison with other typical controllers.</abstract><pub>IEEE</pub><doi>10.1109/FPM.2011.6045813</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424484510
ispartof Proceedings of 2011 International Conference on Fluid Power and Mechatronics, 2011, p.481-486
issn
language eng
recordid cdi_ieee_primary_6045813
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Control systems
fuzzy
Gain
Mathematical model
modified-Grey predictor
Noise
nonlinear system
Nonlinear systems
PID controller
smart online tuning
Tuners
title Design of an online tuning modified-grey fuzzy PID controller for nonlinear systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T11%3A12%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Design%20of%20an%20online%20tuning%20modified-grey%20fuzzy%20PID%20controller%20for%20nonlinear%20systems&rft.btitle=Proceedings%20of%202011%20International%20Conference%20on%20Fluid%20Power%20and%20Mechatronics&rft.au=Dinh%20Quang%20Truong&rft.date=2011-08&rft.spage=481&rft.epage=486&rft.pages=481-486&rft.isbn=1424484510&rft.isbn_list=9781424484515&rft_id=info:doi/10.1109/FPM.2011.6045813&rft_dat=%3Cieee_6IE%3E6045813%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424484502&rft.eisbn_list=1424484499&rft.eisbn_list=1424484529&rft.eisbn_list=9781424484492&rft.eisbn_list=9781424484508&rft.eisbn_list=9781424484522&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6045813&rfr_iscdi=true