Maxwell-Bloch approach to four-wave mixing in quantum dot semiconductor optical amplifiers

We investigate the wavelength conversion efficiency of quantum dot semiconductor optical amplifiers using nonde-generate four-wave mixing. Further we calculate the linewidth enhancement factor as a function of the injection current and determine the effect of the carrier reservoir. The model is on t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Majer, N., Ludge, K., Scholl, E.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 154
container_issue
container_start_page 153
container_title
container_volume
creator Majer, N.
Ludge, K.
Scholl, E.
description We investigate the wavelength conversion efficiency of quantum dot semiconductor optical amplifiers using nonde-generate four-wave mixing. Further we calculate the linewidth enhancement factor as a function of the injection current and determine the effect of the carrier reservoir. The model is on the basis of semiconductor Maxwell-Bloch equations with microscopically calculated interband Coulomb scattering rates as input to the carrier dynamics between quantum dot ground and first excited state and quantum well.
doi_str_mv 10.1109/NUSOD.2011.6041190
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6041190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6041190</ieee_id><sourcerecordid>6041190</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-1143be874da83b84200cce51aaa134521926f1f9473a62c3f8cab4160e33adc33</originalsourceid><addsrcrecordid>eNo1kMtOwzAQRY0AiVL6A7DxD6TMeFzHWUJ5SoUuKBs21dRxwCiJQx60_D1IwOqeszmLK8QpwhQRsvPH56fl1VQB4tSARsxgTxyjQWW1Ta3dF5Mstf9u8ECMFM5sQor0kZh03TsAkALSxozEywPvtr4sk8syujfJTdNG_oE-yiIObbLlTy-rsAv1qwy1_Bi47odK5rGXna-Ci3U-uD62MjZ9cFxKrpoyFMG33Yk4LLjs_ORvx2J1c72a3yWL5e39_GKRhAz6BFHTxttU52xpY7UCcM7PkJmR9ExhpkyBRaZTYqMcFdbxRqMBT8S5IxqLs99s8N6vmzZU3H6t_56hb9PHVlA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Maxwell-Bloch approach to four-wave mixing in quantum dot semiconductor optical amplifiers</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Majer, N. ; Ludge, K. ; Scholl, E.</creator><creatorcontrib>Majer, N. ; Ludge, K. ; Scholl, E.</creatorcontrib><description>We investigate the wavelength conversion efficiency of quantum dot semiconductor optical amplifiers using nonde-generate four-wave mixing. Further we calculate the linewidth enhancement factor as a function of the injection current and determine the effect of the carrier reservoir. The model is on the basis of semiconductor Maxwell-Bloch equations with microscopically calculated interband Coulomb scattering rates as input to the carrier dynamics between quantum dot ground and first excited state and quantum well.</description><identifier>ISSN: 2158-3234</identifier><identifier>ISBN: 9781612848761</identifier><identifier>ISBN: 1612848761</identifier><identifier>EISBN: 1612848788</identifier><identifier>EISBN: 9781612848785</identifier><identifier>DOI: 10.1109/NUSOD.2011.6041190</identifier><language>eng</language><publisher>IEEE</publisher><subject>Mathematical model ; Nonlinear optics ; Optical feedback ; Optical polarization ; Optical wavelength conversion ; Quantum dots ; Ultrafast optics</subject><ispartof>2011 Numerical Simulation of Optoelectronic Devices, 2011, p.153-154</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6041190$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6041190$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Majer, N.</creatorcontrib><creatorcontrib>Ludge, K.</creatorcontrib><creatorcontrib>Scholl, E.</creatorcontrib><title>Maxwell-Bloch approach to four-wave mixing in quantum dot semiconductor optical amplifiers</title><title>2011 Numerical Simulation of Optoelectronic Devices</title><addtitle>NUSOD</addtitle><description>We investigate the wavelength conversion efficiency of quantum dot semiconductor optical amplifiers using nonde-generate four-wave mixing. Further we calculate the linewidth enhancement factor as a function of the injection current and determine the effect of the carrier reservoir. The model is on the basis of semiconductor Maxwell-Bloch equations with microscopically calculated interband Coulomb scattering rates as input to the carrier dynamics between quantum dot ground and first excited state and quantum well.</description><subject>Mathematical model</subject><subject>Nonlinear optics</subject><subject>Optical feedback</subject><subject>Optical polarization</subject><subject>Optical wavelength conversion</subject><subject>Quantum dots</subject><subject>Ultrafast optics</subject><issn>2158-3234</issn><isbn>9781612848761</isbn><isbn>1612848761</isbn><isbn>1612848788</isbn><isbn>9781612848785</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtOwzAQRY0AiVL6A7DxD6TMeFzHWUJ5SoUuKBs21dRxwCiJQx60_D1IwOqeszmLK8QpwhQRsvPH56fl1VQB4tSARsxgTxyjQWW1Ta3dF5Mstf9u8ECMFM5sQor0kZh03TsAkALSxozEywPvtr4sk8syujfJTdNG_oE-yiIObbLlTy-rsAv1qwy1_Bi47odK5rGXna-Ci3U-uD62MjZ9cFxKrpoyFMG33Yk4LLjs_ORvx2J1c72a3yWL5e39_GKRhAz6BFHTxttU52xpY7UCcM7PkJmR9ExhpkyBRaZTYqMcFdbxRqMBT8S5IxqLs99s8N6vmzZU3H6t_56hb9PHVlA</recordid><startdate>201109</startdate><enddate>201109</enddate><creator>Majer, N.</creator><creator>Ludge, K.</creator><creator>Scholl, E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201109</creationdate><title>Maxwell-Bloch approach to four-wave mixing in quantum dot semiconductor optical amplifiers</title><author>Majer, N. ; Ludge, K. ; Scholl, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-1143be874da83b84200cce51aaa134521926f1f9473a62c3f8cab4160e33adc33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Mathematical model</topic><topic>Nonlinear optics</topic><topic>Optical feedback</topic><topic>Optical polarization</topic><topic>Optical wavelength conversion</topic><topic>Quantum dots</topic><topic>Ultrafast optics</topic><toplevel>online_resources</toplevel><creatorcontrib>Majer, N.</creatorcontrib><creatorcontrib>Ludge, K.</creatorcontrib><creatorcontrib>Scholl, E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Majer, N.</au><au>Ludge, K.</au><au>Scholl, E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Maxwell-Bloch approach to four-wave mixing in quantum dot semiconductor optical amplifiers</atitle><btitle>2011 Numerical Simulation of Optoelectronic Devices</btitle><stitle>NUSOD</stitle><date>2011-09</date><risdate>2011</risdate><spage>153</spage><epage>154</epage><pages>153-154</pages><issn>2158-3234</issn><isbn>9781612848761</isbn><isbn>1612848761</isbn><eisbn>1612848788</eisbn><eisbn>9781612848785</eisbn><abstract>We investigate the wavelength conversion efficiency of quantum dot semiconductor optical amplifiers using nonde-generate four-wave mixing. Further we calculate the linewidth enhancement factor as a function of the injection current and determine the effect of the carrier reservoir. The model is on the basis of semiconductor Maxwell-Bloch equations with microscopically calculated interband Coulomb scattering rates as input to the carrier dynamics between quantum dot ground and first excited state and quantum well.</abstract><pub>IEEE</pub><doi>10.1109/NUSOD.2011.6041190</doi><tpages>2</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2158-3234
ispartof 2011 Numerical Simulation of Optoelectronic Devices, 2011, p.153-154
issn 2158-3234
language eng
recordid cdi_ieee_primary_6041190
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Mathematical model
Nonlinear optics
Optical feedback
Optical polarization
Optical wavelength conversion
Quantum dots
Ultrafast optics
title Maxwell-Bloch approach to four-wave mixing in quantum dot semiconductor optical amplifiers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A30%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Maxwell-Bloch%20approach%20to%20four-wave%20mixing%20in%20quantum%20dot%20semiconductor%20optical%20amplifiers&rft.btitle=2011%20Numerical%20Simulation%20of%20Optoelectronic%20Devices&rft.au=Majer,%20N.&rft.date=2011-09&rft.spage=153&rft.epage=154&rft.pages=153-154&rft.issn=2158-3234&rft.isbn=9781612848761&rft.isbn_list=1612848761&rft_id=info:doi/10.1109/NUSOD.2011.6041190&rft_dat=%3Cieee_6IE%3E6041190%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1612848788&rft.eisbn_list=9781612848785&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6041190&rfr_iscdi=true