On fault probabilities and yield models for VLSI neural networks

We investigate the estimation of fault probabilities and yield for very large scale integration (VLSI) implementations of neural computational models. Our analysis is limited to structures that can be mapped directly onto silicon as truly distributed parallel processing systems. Our work improves on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of solid-state circuits 1997-08, Vol.32 (8), p.1284-1287
Hauptverfasser: Furth, P.M., Andreou, A.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1287
container_issue 8
container_start_page 1284
container_title IEEE journal of solid-state circuits
container_volume 32
creator Furth, P.M.
Andreou, A.G.
description We investigate the estimation of fault probabilities and yield for very large scale integration (VLSI) implementations of neural computational models. Our analysis is limited to structures that can be mapped directly onto silicon as truly distributed parallel processing systems. Our work improves on the framework suggested by Feltham and Maly and is also applicable to analog or mixed analog/digital VLSI systems.
doi_str_mv 10.1109/4.604090
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_604090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>604090</ieee_id><sourcerecordid>28430528</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-3ea80dc5948df5773ba1e4ec248ee908cbb1d5fb5284b1567b748520c0b93</originalsourceid><addsrcrecordid>eNo9kM1LxDAUxIMouK6CZ085iZeuL22yTW_K4sdCYRFFvIUkfYVotl2TFtn_3kgXT8NjfvMYhpBLBgvGoLrliyVwqOCIzJgQMmNl8XFMZgBMZlUOcErOYvxMJ-eSzcjdpqOtHv1Ad6E32jjvBoeR6q6he4e-odu-QR9p2wf6Xr-uaYdj0D7J8NOHr3hOTlrtI14cdE5eHh_eVs9ZvXlar-7rzOalGLICtYTGiorLphVlWRjNkKPNuUSsQFpjWCNaI3LJDRPL0pRcihwsmKqYk-vpZ-r4PWIc1NZFi97rDvsxqpQpICUTeDOBNvQxBmzVLritDnvFQP3No7ia5kno1YQ6RPzHDuYvm0FfFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28430528</pqid></control><display><type>article</type><title>On fault probabilities and yield models for VLSI neural networks</title><source>IEEE Electronic Library (IEL)</source><creator>Furth, P.M. ; Andreou, A.G.</creator><creatorcontrib>Furth, P.M. ; Andreou, A.G.</creatorcontrib><description>We investigate the estimation of fault probabilities and yield for very large scale integration (VLSI) implementations of neural computational models. Our analysis is limited to structures that can be mapped directly onto silicon as truly distributed parallel processing systems. Our work improves on the framework suggested by Feltham and Maly and is also applicable to analog or mixed analog/digital VLSI systems.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/4.604090</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>IEEE</publisher><subject>Circuit faults ; Computational modeling ; Distributed processing ; Fault tolerant systems ; Neural network hardware ; Neural networks ; Parallel processing ; Silicon ; Very large scale integration ; Yield estimation</subject><ispartof>IEEE journal of solid-state circuits, 1997-08, Vol.32 (8), p.1284-1287</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-3ea80dc5948df5773ba1e4ec248ee908cbb1d5fb5284b1567b748520c0b93</citedby><cites>FETCH-LOGICAL-c275t-3ea80dc5948df5773ba1e4ec248ee908cbb1d5fb5284b1567b748520c0b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/604090$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/604090$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Furth, P.M.</creatorcontrib><creatorcontrib>Andreou, A.G.</creatorcontrib><title>On fault probabilities and yield models for VLSI neural networks</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>We investigate the estimation of fault probabilities and yield for very large scale integration (VLSI) implementations of neural computational models. Our analysis is limited to structures that can be mapped directly onto silicon as truly distributed parallel processing systems. Our work improves on the framework suggested by Feltham and Maly and is also applicable to analog or mixed analog/digital VLSI systems.</description><subject>Circuit faults</subject><subject>Computational modeling</subject><subject>Distributed processing</subject><subject>Fault tolerant systems</subject><subject>Neural network hardware</subject><subject>Neural networks</subject><subject>Parallel processing</subject><subject>Silicon</subject><subject>Very large scale integration</subject><subject>Yield estimation</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNo9kM1LxDAUxIMouK6CZ085iZeuL22yTW_K4sdCYRFFvIUkfYVotl2TFtn_3kgXT8NjfvMYhpBLBgvGoLrliyVwqOCIzJgQMmNl8XFMZgBMZlUOcErOYvxMJ-eSzcjdpqOtHv1Ad6E32jjvBoeR6q6he4e-odu-QR9p2wf6Xr-uaYdj0D7J8NOHr3hOTlrtI14cdE5eHh_eVs9ZvXlar-7rzOalGLICtYTGiorLphVlWRjNkKPNuUSsQFpjWCNaI3LJDRPL0pRcihwsmKqYk-vpZ-r4PWIc1NZFi97rDvsxqpQpICUTeDOBNvQxBmzVLritDnvFQP3No7ia5kno1YQ6RPzHDuYvm0FfFw</recordid><startdate>199708</startdate><enddate>199708</enddate><creator>Furth, P.M.</creator><creator>Andreou, A.G.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>199708</creationdate><title>On fault probabilities and yield models for VLSI neural networks</title><author>Furth, P.M. ; Andreou, A.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-3ea80dc5948df5773ba1e4ec248ee908cbb1d5fb5284b1567b748520c0b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Circuit faults</topic><topic>Computational modeling</topic><topic>Distributed processing</topic><topic>Fault tolerant systems</topic><topic>Neural network hardware</topic><topic>Neural networks</topic><topic>Parallel processing</topic><topic>Silicon</topic><topic>Very large scale integration</topic><topic>Yield estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Furth, P.M.</creatorcontrib><creatorcontrib>Andreou, A.G.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Furth, P.M.</au><au>Andreou, A.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On fault probabilities and yield models for VLSI neural networks</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>1997-08</date><risdate>1997</risdate><volume>32</volume><issue>8</issue><spage>1284</spage><epage>1287</epage><pages>1284-1287</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>We investigate the estimation of fault probabilities and yield for very large scale integration (VLSI) implementations of neural computational models. Our analysis is limited to structures that can be mapped directly onto silicon as truly distributed parallel processing systems. Our work improves on the framework suggested by Feltham and Maly and is also applicable to analog or mixed analog/digital VLSI systems.</abstract><pub>IEEE</pub><doi>10.1109/4.604090</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9200
ispartof IEEE journal of solid-state circuits, 1997-08, Vol.32 (8), p.1284-1287
issn 0018-9200
1558-173X
language eng
recordid cdi_ieee_primary_604090
source IEEE Electronic Library (IEL)
subjects Circuit faults
Computational modeling
Distributed processing
Fault tolerant systems
Neural network hardware
Neural networks
Parallel processing
Silicon
Very large scale integration
Yield estimation
title On fault probabilities and yield models for VLSI neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A00%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20fault%20probabilities%20and%20yield%20models%20for%20VLSI%20neural%20networks&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Furth,%20P.M.&rft.date=1997-08&rft.volume=32&rft.issue=8&rft.spage=1284&rft.epage=1287&rft.pages=1284-1287&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/4.604090&rft_dat=%3Cproquest_RIE%3E28430528%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28430528&rft_id=info:pmid/&rft_ieee_id=604090&rfr_iscdi=true