Automatic fall detection based on Doppler radar motion signature
Falling is a common health problem for elderly. It is reported that more than one third of adults 65 and older fall each year in the United States. To address the problem, we are currently developing a Doppler radar-based fall detection system. Doppler radar sensors provide an inexpensive way to rec...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 225 |
---|---|
container_issue | |
container_start_page | 222 |
container_title | |
container_volume | |
creator | Liang Liu Popescu, M. Skubic, M. Rantz, M. Yardibi, T. Cuddihy, P. |
description | Falling is a common health problem for elderly. It is reported that more than one third of adults 65 and older fall each year in the United States. To address the problem, we are currently developing a Doppler radar-based fall detection system. Doppler radar sensors provide an inexpensive way to recognize human activity. In this paper, we employed mel-frequency cepstral coefficients (MFCC) to represent the Doppler signatures of various human activities such as walking, bending down, falling, etc. Then we used two different classifiers, SVM and kNN, to automatically detect falls based on the extracted MFCC features. We obtained encouraging classification results on a pilot dataset that contained 109 falls and 341 non-fall human activities. |
doi_str_mv | 10.4108/icst.pervasivehealth.2011.245993 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6038799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6038799</ieee_id><sourcerecordid>6038799</sourcerecordid><originalsourceid>FETCH-LOGICAL-i2143-8b32f879fc7964f5909adfae82c105212b638527f24a2dcc2d1fc9262ff38eec3</originalsourceid><addsrcrecordid>eNotjMtOwzAURI0ACSj9AjZZsknwvXb82FGVp1SJDawr17mmRmkT2W4l_p4ImM2MdDSHsVvgjQRu7qLPpRkpHV2OR9qS68u2QQ7QoGytFSfsCqxQVhmQeMrmVhtQgEZqpfGMXSK0ogYlxAWb5_zFpyhlpdGX7H5xKMPOleir4Pq-6qiQL3HYVxuXqaum8TCMY0-pSq5zqdoNvzTHz70rh0TX7Hw6Zpr_94x9PD2-L1_q1dvz63KxqiOCFLXZCAxG2-C1VTK0llvXBUcGPfAWATdKmBZ1QOmw8x47CN6iwhCEIfJixm7-vJGI1mOKO5e-14qLSWrFD4UuU0c</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automatic fall detection based on Doppler radar motion signature</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Liang Liu ; Popescu, M. ; Skubic, M. ; Rantz, M. ; Yardibi, T. ; Cuddihy, P.</creator><creatorcontrib>Liang Liu ; Popescu, M. ; Skubic, M. ; Rantz, M. ; Yardibi, T. ; Cuddihy, P.</creatorcontrib><description>Falling is a common health problem for elderly. It is reported that more than one third of adults 65 and older fall each year in the United States. To address the problem, we are currently developing a Doppler radar-based fall detection system. Doppler radar sensors provide an inexpensive way to recognize human activity. In this paper, we employed mel-frequency cepstral coefficients (MFCC) to represent the Doppler signatures of various human activities such as walking, bending down, falling, etc. Then we used two different classifiers, SVM and kNN, to automatically detect falls based on the extracted MFCC features. We obtained encouraging classification results on a pilot dataset that contained 109 falls and 341 non-fall human activities.</description><identifier>ISSN: 2153-1633</identifier><identifier>ISBN: 9781612847672</identifier><identifier>ISBN: 1612847676</identifier><identifier>EISBN: 1936968142</identifier><identifier>EISBN: 9781936968145</identifier><identifier>EISBN: 1936968150</identifier><identifier>EISBN: 9781936968152</identifier><identifier>DOI: 10.4108/icst.pervasivehealth.2011.245993</identifier><language>eng</language><publisher>IEEE</publisher><subject>Doppler effect ; Doppler radar ; eldercare ; fall detection ; Feature extraction ; Humans ; kNN ; MFCC features ; radar classification ; Sensors ; Spectrogram ; SVM</subject><ispartof>2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops, 2011, p.222-225</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6038799$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,4051,4052,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6038799$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liang Liu</creatorcontrib><creatorcontrib>Popescu, M.</creatorcontrib><creatorcontrib>Skubic, M.</creatorcontrib><creatorcontrib>Rantz, M.</creatorcontrib><creatorcontrib>Yardibi, T.</creatorcontrib><creatorcontrib>Cuddihy, P.</creatorcontrib><title>Automatic fall detection based on Doppler radar motion signature</title><title>2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops</title><addtitle>PervasiveHealth</addtitle><description>Falling is a common health problem for elderly. It is reported that more than one third of adults 65 and older fall each year in the United States. To address the problem, we are currently developing a Doppler radar-based fall detection system. Doppler radar sensors provide an inexpensive way to recognize human activity. In this paper, we employed mel-frequency cepstral coefficients (MFCC) to represent the Doppler signatures of various human activities such as walking, bending down, falling, etc. Then we used two different classifiers, SVM and kNN, to automatically detect falls based on the extracted MFCC features. We obtained encouraging classification results on a pilot dataset that contained 109 falls and 341 non-fall human activities.</description><subject>Doppler effect</subject><subject>Doppler radar</subject><subject>eldercare</subject><subject>fall detection</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>kNN</subject><subject>MFCC features</subject><subject>radar classification</subject><subject>Sensors</subject><subject>Spectrogram</subject><subject>SVM</subject><issn>2153-1633</issn><isbn>9781612847672</isbn><isbn>1612847676</isbn><isbn>1936968142</isbn><isbn>9781936968145</isbn><isbn>1936968150</isbn><isbn>9781936968152</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjMtOwzAURI0ACSj9AjZZsknwvXb82FGVp1SJDawr17mmRmkT2W4l_p4ImM2MdDSHsVvgjQRu7qLPpRkpHV2OR9qS68u2QQ7QoGytFSfsCqxQVhmQeMrmVhtQgEZqpfGMXSK0ogYlxAWb5_zFpyhlpdGX7H5xKMPOleir4Pq-6qiQL3HYVxuXqaum8TCMY0-pSq5zqdoNvzTHz70rh0TX7Hw6Zpr_94x9PD2-L1_q1dvz63KxqiOCFLXZCAxG2-C1VTK0llvXBUcGPfAWATdKmBZ1QOmw8x47CN6iwhCEIfJixm7-vJGI1mOKO5e-14qLSWrFD4UuU0c</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Liang Liu</creator><creator>Popescu, M.</creator><creator>Skubic, M.</creator><creator>Rantz, M.</creator><creator>Yardibi, T.</creator><creator>Cuddihy, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2011</creationdate><title>Automatic fall detection based on Doppler radar motion signature</title><author>Liang Liu ; Popescu, M. ; Skubic, M. ; Rantz, M. ; Yardibi, T. ; Cuddihy, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i2143-8b32f879fc7964f5909adfae82c105212b638527f24a2dcc2d1fc9262ff38eec3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Doppler effect</topic><topic>Doppler radar</topic><topic>eldercare</topic><topic>fall detection</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>kNN</topic><topic>MFCC features</topic><topic>radar classification</topic><topic>Sensors</topic><topic>Spectrogram</topic><topic>SVM</topic><toplevel>online_resources</toplevel><creatorcontrib>Liang Liu</creatorcontrib><creatorcontrib>Popescu, M.</creatorcontrib><creatorcontrib>Skubic, M.</creatorcontrib><creatorcontrib>Rantz, M.</creatorcontrib><creatorcontrib>Yardibi, T.</creatorcontrib><creatorcontrib>Cuddihy, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liang Liu</au><au>Popescu, M.</au><au>Skubic, M.</au><au>Rantz, M.</au><au>Yardibi, T.</au><au>Cuddihy, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automatic fall detection based on Doppler radar motion signature</atitle><btitle>2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops</btitle><stitle>PervasiveHealth</stitle><date>2011</date><risdate>2011</risdate><spage>222</spage><epage>225</epage><pages>222-225</pages><issn>2153-1633</issn><isbn>9781612847672</isbn><isbn>1612847676</isbn><eisbn>1936968142</eisbn><eisbn>9781936968145</eisbn><eisbn>1936968150</eisbn><eisbn>9781936968152</eisbn><abstract>Falling is a common health problem for elderly. It is reported that more than one third of adults 65 and older fall each year in the United States. To address the problem, we are currently developing a Doppler radar-based fall detection system. Doppler radar sensors provide an inexpensive way to recognize human activity. In this paper, we employed mel-frequency cepstral coefficients (MFCC) to represent the Doppler signatures of various human activities such as walking, bending down, falling, etc. Then we used two different classifiers, SVM and kNN, to automatically detect falls based on the extracted MFCC features. We obtained encouraging classification results on a pilot dataset that contained 109 falls and 341 non-fall human activities.</abstract><pub>IEEE</pub><doi>10.4108/icst.pervasivehealth.2011.245993</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2153-1633 |
ispartof | 2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops, 2011, p.222-225 |
issn | 2153-1633 |
language | eng |
recordid | cdi_ieee_primary_6038799 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Doppler effect Doppler radar eldercare fall detection Feature extraction Humans kNN MFCC features radar classification Sensors Spectrogram SVM |
title | Automatic fall detection based on Doppler radar motion signature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T09%3A52%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automatic%20fall%20detection%20based%20on%20Doppler%20radar%20motion%20signature&rft.btitle=2011%205th%20International%20Conference%20on%20Pervasive%20Computing%20Technologies%20for%20Healthcare%20(PervasiveHealth)%20and%20Workshops&rft.au=Liang%20Liu&rft.date=2011&rft.spage=222&rft.epage=225&rft.pages=222-225&rft.issn=2153-1633&rft.isbn=9781612847672&rft.isbn_list=1612847676&rft_id=info:doi/10.4108/icst.pervasivehealth.2011.245993&rft_dat=%3Cieee_6IE%3E6038799%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1936968142&rft.eisbn_list=9781936968145&rft.eisbn_list=1936968150&rft.eisbn_list=9781936968152&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6038799&rfr_iscdi=true |