Automatic fall detection based on Doppler radar motion signature

Falling is a common health problem for elderly. It is reported that more than one third of adults 65 and older fall each year in the United States. To address the problem, we are currently developing a Doppler radar-based fall detection system. Doppler radar sensors provide an inexpensive way to rec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Liang Liu, Popescu, M., Skubic, M., Rantz, M., Yardibi, T., Cuddihy, P.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 225
container_issue
container_start_page 222
container_title
container_volume
creator Liang Liu
Popescu, M.
Skubic, M.
Rantz, M.
Yardibi, T.
Cuddihy, P.
description Falling is a common health problem for elderly. It is reported that more than one third of adults 65 and older fall each year in the United States. To address the problem, we are currently developing a Doppler radar-based fall detection system. Doppler radar sensors provide an inexpensive way to recognize human activity. In this paper, we employed mel-frequency cepstral coefficients (MFCC) to represent the Doppler signatures of various human activities such as walking, bending down, falling, etc. Then we used two different classifiers, SVM and kNN, to automatically detect falls based on the extracted MFCC features. We obtained encouraging classification results on a pilot dataset that contained 109 falls and 341 non-fall human activities.
doi_str_mv 10.4108/icst.pervasivehealth.2011.245993
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6038799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6038799</ieee_id><sourcerecordid>6038799</sourcerecordid><originalsourceid>FETCH-LOGICAL-i2143-8b32f879fc7964f5909adfae82c105212b638527f24a2dcc2d1fc9262ff38eec3</originalsourceid><addsrcrecordid>eNotjMtOwzAURI0ACSj9AjZZsknwvXb82FGVp1SJDawr17mmRmkT2W4l_p4ImM2MdDSHsVvgjQRu7qLPpRkpHV2OR9qS68u2QQ7QoGytFSfsCqxQVhmQeMrmVhtQgEZqpfGMXSK0ogYlxAWb5_zFpyhlpdGX7H5xKMPOleir4Pq-6qiQL3HYVxuXqaum8TCMY0-pSq5zqdoNvzTHz70rh0TX7Hw6Zpr_94x9PD2-L1_q1dvz63KxqiOCFLXZCAxG2-C1VTK0llvXBUcGPfAWATdKmBZ1QOmw8x47CN6iwhCEIfJixm7-vJGI1mOKO5e-14qLSWrFD4UuU0c</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automatic fall detection based on Doppler radar motion signature</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Liang Liu ; Popescu, M. ; Skubic, M. ; Rantz, M. ; Yardibi, T. ; Cuddihy, P.</creator><creatorcontrib>Liang Liu ; Popescu, M. ; Skubic, M. ; Rantz, M. ; Yardibi, T. ; Cuddihy, P.</creatorcontrib><description>Falling is a common health problem for elderly. It is reported that more than one third of adults 65 and older fall each year in the United States. To address the problem, we are currently developing a Doppler radar-based fall detection system. Doppler radar sensors provide an inexpensive way to recognize human activity. In this paper, we employed mel-frequency cepstral coefficients (MFCC) to represent the Doppler signatures of various human activities such as walking, bending down, falling, etc. Then we used two different classifiers, SVM and kNN, to automatically detect falls based on the extracted MFCC features. We obtained encouraging classification results on a pilot dataset that contained 109 falls and 341 non-fall human activities.</description><identifier>ISSN: 2153-1633</identifier><identifier>ISBN: 9781612847672</identifier><identifier>ISBN: 1612847676</identifier><identifier>EISBN: 1936968142</identifier><identifier>EISBN: 9781936968145</identifier><identifier>EISBN: 1936968150</identifier><identifier>EISBN: 9781936968152</identifier><identifier>DOI: 10.4108/icst.pervasivehealth.2011.245993</identifier><language>eng</language><publisher>IEEE</publisher><subject>Doppler effect ; Doppler radar ; eldercare ; fall detection ; Feature extraction ; Humans ; kNN ; MFCC features ; radar classification ; Sensors ; Spectrogram ; SVM</subject><ispartof>2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops, 2011, p.222-225</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6038799$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,4051,4052,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6038799$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liang Liu</creatorcontrib><creatorcontrib>Popescu, M.</creatorcontrib><creatorcontrib>Skubic, M.</creatorcontrib><creatorcontrib>Rantz, M.</creatorcontrib><creatorcontrib>Yardibi, T.</creatorcontrib><creatorcontrib>Cuddihy, P.</creatorcontrib><title>Automatic fall detection based on Doppler radar motion signature</title><title>2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops</title><addtitle>PervasiveHealth</addtitle><description>Falling is a common health problem for elderly. It is reported that more than one third of adults 65 and older fall each year in the United States. To address the problem, we are currently developing a Doppler radar-based fall detection system. Doppler radar sensors provide an inexpensive way to recognize human activity. In this paper, we employed mel-frequency cepstral coefficients (MFCC) to represent the Doppler signatures of various human activities such as walking, bending down, falling, etc. Then we used two different classifiers, SVM and kNN, to automatically detect falls based on the extracted MFCC features. We obtained encouraging classification results on a pilot dataset that contained 109 falls and 341 non-fall human activities.</description><subject>Doppler effect</subject><subject>Doppler radar</subject><subject>eldercare</subject><subject>fall detection</subject><subject>Feature extraction</subject><subject>Humans</subject><subject>kNN</subject><subject>MFCC features</subject><subject>radar classification</subject><subject>Sensors</subject><subject>Spectrogram</subject><subject>SVM</subject><issn>2153-1633</issn><isbn>9781612847672</isbn><isbn>1612847676</isbn><isbn>1936968142</isbn><isbn>9781936968145</isbn><isbn>1936968150</isbn><isbn>9781936968152</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjMtOwzAURI0ACSj9AjZZsknwvXb82FGVp1SJDawr17mmRmkT2W4l_p4ImM2MdDSHsVvgjQRu7qLPpRkpHV2OR9qS68u2QQ7QoGytFSfsCqxQVhmQeMrmVhtQgEZqpfGMXSK0ogYlxAWb5_zFpyhlpdGX7H5xKMPOleir4Pq-6qiQL3HYVxuXqaum8TCMY0-pSq5zqdoNvzTHz70rh0TX7Hw6Zpr_94x9PD2-L1_q1dvz63KxqiOCFLXZCAxG2-C1VTK0llvXBUcGPfAWATdKmBZ1QOmw8x47CN6iwhCEIfJixm7-vJGI1mOKO5e-14qLSWrFD4UuU0c</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Liang Liu</creator><creator>Popescu, M.</creator><creator>Skubic, M.</creator><creator>Rantz, M.</creator><creator>Yardibi, T.</creator><creator>Cuddihy, P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2011</creationdate><title>Automatic fall detection based on Doppler radar motion signature</title><author>Liang Liu ; Popescu, M. ; Skubic, M. ; Rantz, M. ; Yardibi, T. ; Cuddihy, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i2143-8b32f879fc7964f5909adfae82c105212b638527f24a2dcc2d1fc9262ff38eec3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Doppler effect</topic><topic>Doppler radar</topic><topic>eldercare</topic><topic>fall detection</topic><topic>Feature extraction</topic><topic>Humans</topic><topic>kNN</topic><topic>MFCC features</topic><topic>radar classification</topic><topic>Sensors</topic><topic>Spectrogram</topic><topic>SVM</topic><toplevel>online_resources</toplevel><creatorcontrib>Liang Liu</creatorcontrib><creatorcontrib>Popescu, M.</creatorcontrib><creatorcontrib>Skubic, M.</creatorcontrib><creatorcontrib>Rantz, M.</creatorcontrib><creatorcontrib>Yardibi, T.</creatorcontrib><creatorcontrib>Cuddihy, P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liang Liu</au><au>Popescu, M.</au><au>Skubic, M.</au><au>Rantz, M.</au><au>Yardibi, T.</au><au>Cuddihy, P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automatic fall detection based on Doppler radar motion signature</atitle><btitle>2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops</btitle><stitle>PervasiveHealth</stitle><date>2011</date><risdate>2011</risdate><spage>222</spage><epage>225</epage><pages>222-225</pages><issn>2153-1633</issn><isbn>9781612847672</isbn><isbn>1612847676</isbn><eisbn>1936968142</eisbn><eisbn>9781936968145</eisbn><eisbn>1936968150</eisbn><eisbn>9781936968152</eisbn><abstract>Falling is a common health problem for elderly. It is reported that more than one third of adults 65 and older fall each year in the United States. To address the problem, we are currently developing a Doppler radar-based fall detection system. Doppler radar sensors provide an inexpensive way to recognize human activity. In this paper, we employed mel-frequency cepstral coefficients (MFCC) to represent the Doppler signatures of various human activities such as walking, bending down, falling, etc. Then we used two different classifiers, SVM and kNN, to automatically detect falls based on the extracted MFCC features. We obtained encouraging classification results on a pilot dataset that contained 109 falls and 341 non-fall human activities.</abstract><pub>IEEE</pub><doi>10.4108/icst.pervasivehealth.2011.245993</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2153-1633
ispartof 2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops, 2011, p.222-225
issn 2153-1633
language eng
recordid cdi_ieee_primary_6038799
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Doppler effect
Doppler radar
eldercare
fall detection
Feature extraction
Humans
kNN
MFCC features
radar classification
Sensors
Spectrogram
SVM
title Automatic fall detection based on Doppler radar motion signature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T09%3A52%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automatic%20fall%20detection%20based%20on%20Doppler%20radar%20motion%20signature&rft.btitle=2011%205th%20International%20Conference%20on%20Pervasive%20Computing%20Technologies%20for%20Healthcare%20(PervasiveHealth)%20and%20Workshops&rft.au=Liang%20Liu&rft.date=2011&rft.spage=222&rft.epage=225&rft.pages=222-225&rft.issn=2153-1633&rft.isbn=9781612847672&rft.isbn_list=1612847676&rft_id=info:doi/10.4108/icst.pervasivehealth.2011.245993&rft_dat=%3Cieee_6IE%3E6038799%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1936968142&rft.eisbn_list=9781936968145&rft.eisbn_list=1936968150&rft.eisbn_list=9781936968152&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6038799&rfr_iscdi=true