Real-Time Driver's Stress Event Detection

In this paper, a real-time methodology for the detection of stress events while driving is presented. The detection is based on the use of physiological signals, i.e., electrocardiogram, electrodermal activity, and respiration, as well as past observations of driving behavior. Features are calculate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2012-03, Vol.13 (1), p.221-234
Hauptverfasser: Rigas, G., Goletsis, Y., Fotiadis, D. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 234
container_issue 1
container_start_page 221
container_title IEEE transactions on intelligent transportation systems
container_volume 13
creator Rigas, G.
Goletsis, Y.
Fotiadis, D. I.
description In this paper, a real-time methodology for the detection of stress events while driving is presented. The detection is based on the use of physiological signals, i.e., electrocardiogram, electrodermal activity, and respiration, as well as past observations of driving behavior. Features are calculated over windows of specific length and are introduced in a Bayesian network to detect driver's stress events. The accuracy of the stress event detection based only on physiological features, evaluated on a data set obtained in real driving conditions, resulted in an accuracy of 82%. Enhancement of the stress event detection model with the incorporation of driving event information has reduced false positives, yielding an increased accuracy of 96%. Furthermore, our methodology demonstrates good adaptability due to the application of online learning of the model parameters.
doi_str_mv 10.1109/TITS.2011.2168215
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6036175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6036175</ieee_id><sourcerecordid>1019657521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-a272cdac392d3e2d2f710c8e3069dc0fc5bec7f4dc059006cc2b576e555ad7473</originalsourceid><addsrcrecordid>eNpdkMFKw0AQhhdRsFYfQLwEL-ohcWc3s9scpa1aKAg2npd0M4GUNKm7acG3d0OLB08zDN_8_HyM3QJPAHj2nC_yVSI4QCJATQTgGRsB4iTmHNT5sIs0zjjyS3bl_SZcUwQYsadPKpo4r7cUzVx9IPfgo1XvyPtofqC2j2bUk-3rrr1mF1XReLo5zTH7ep3n0_d4-fG2mL4sYysF9nEhtLBlYWUmSkmiFJUGbickucpKyyuLa7K6SsOOGefKWrFGrQgRi1KnWo7Z4zF357rvPfnebGtvqWmKlrq9N8AhU6hRQEDv_6Gbbu_a0M5kIhQIIlSA4AhZ13nvqDI7V28L9xOSzODODO7M4M6c3IWfu-NPTUR_vOJSgUb5C1rNaF8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>923926826</pqid></control><display><type>article</type><title>Real-Time Driver's Stress Event Detection</title><source>IEEE Electronic Library (IEL)</source><creator>Rigas, G. ; Goletsis, Y. ; Fotiadis, D. I.</creator><creatorcontrib>Rigas, G. ; Goletsis, Y. ; Fotiadis, D. I.</creatorcontrib><description>In this paper, a real-time methodology for the detection of stress events while driving is presented. The detection is based on the use of physiological signals, i.e., electrocardiogram, electrodermal activity, and respiration, as well as past observations of driving behavior. Features are calculated over windows of specific length and are introduced in a Bayesian network to detect driver's stress events. The accuracy of the stress event detection based only on physiological features, evaluated on a data set obtained in real driving conditions, resulted in an accuracy of 82%. Enhancement of the stress event detection model with the incorporation of driving event information has reduced false positives, yielding an increased accuracy of 96%. Furthermore, our methodology demonstrates good adaptability due to the application of online learning of the model parameters.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2011.2168215</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Bayesian networks (BNs) ; driver stress ; Driving ; Driving conditions ; driving environment ; Estimation ; Feature extraction ; Heart rate variability ; Kalman filter ; Kalman filters ; Mathematical models ; Methodology ; On-line systems ; physiological signals ; Real time ; Real time systems ; Stress ; Stresses ; Vehicles</subject><ispartof>IEEE transactions on intelligent transportation systems, 2012-03, Vol.13 (1), p.221-234</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-a272cdac392d3e2d2f710c8e3069dc0fc5bec7f4dc059006cc2b576e555ad7473</citedby><cites>FETCH-LOGICAL-c325t-a272cdac392d3e2d2f710c8e3069dc0fc5bec7f4dc059006cc2b576e555ad7473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6036175$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6036175$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rigas, G.</creatorcontrib><creatorcontrib>Goletsis, Y.</creatorcontrib><creatorcontrib>Fotiadis, D. I.</creatorcontrib><title>Real-Time Driver's Stress Event Detection</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>In this paper, a real-time methodology for the detection of stress events while driving is presented. The detection is based on the use of physiological signals, i.e., electrocardiogram, electrodermal activity, and respiration, as well as past observations of driving behavior. Features are calculated over windows of specific length and are introduced in a Bayesian network to detect driver's stress events. The accuracy of the stress event detection based only on physiological features, evaluated on a data set obtained in real driving conditions, resulted in an accuracy of 82%. Enhancement of the stress event detection model with the incorporation of driving event information has reduced false positives, yielding an increased accuracy of 96%. Furthermore, our methodology demonstrates good adaptability due to the application of online learning of the model parameters.</description><subject>Accuracy</subject><subject>Bayesian networks (BNs)</subject><subject>driver stress</subject><subject>Driving</subject><subject>Driving conditions</subject><subject>driving environment</subject><subject>Estimation</subject><subject>Feature extraction</subject><subject>Heart rate variability</subject><subject>Kalman filter</subject><subject>Kalman filters</subject><subject>Mathematical models</subject><subject>Methodology</subject><subject>On-line systems</subject><subject>physiological signals</subject><subject>Real time</subject><subject>Real time systems</subject><subject>Stress</subject><subject>Stresses</subject><subject>Vehicles</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMFKw0AQhhdRsFYfQLwEL-ohcWc3s9scpa1aKAg2npd0M4GUNKm7acG3d0OLB08zDN_8_HyM3QJPAHj2nC_yVSI4QCJATQTgGRsB4iTmHNT5sIs0zjjyS3bl_SZcUwQYsadPKpo4r7cUzVx9IPfgo1XvyPtofqC2j2bUk-3rrr1mF1XReLo5zTH7ep3n0_d4-fG2mL4sYysF9nEhtLBlYWUmSkmiFJUGbickucpKyyuLa7K6SsOOGefKWrFGrQgRi1KnWo7Z4zF357rvPfnebGtvqWmKlrq9N8AhU6hRQEDv_6Gbbu_a0M5kIhQIIlSA4AhZ13nvqDI7V28L9xOSzODODO7M4M6c3IWfu-NPTUR_vOJSgUb5C1rNaF8</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Rigas, G.</creator><creator>Goletsis, Y.</creator><creator>Fotiadis, D. I.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>201203</creationdate><title>Real-Time Driver's Stress Event Detection</title><author>Rigas, G. ; Goletsis, Y. ; Fotiadis, D. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-a272cdac392d3e2d2f710c8e3069dc0fc5bec7f4dc059006cc2b576e555ad7473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Accuracy</topic><topic>Bayesian networks (BNs)</topic><topic>driver stress</topic><topic>Driving</topic><topic>Driving conditions</topic><topic>driving environment</topic><topic>Estimation</topic><topic>Feature extraction</topic><topic>Heart rate variability</topic><topic>Kalman filter</topic><topic>Kalman filters</topic><topic>Mathematical models</topic><topic>Methodology</topic><topic>On-line systems</topic><topic>physiological signals</topic><topic>Real time</topic><topic>Real time systems</topic><topic>Stress</topic><topic>Stresses</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rigas, G.</creatorcontrib><creatorcontrib>Goletsis, Y.</creatorcontrib><creatorcontrib>Fotiadis, D. I.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rigas, G.</au><au>Goletsis, Y.</au><au>Fotiadis, D. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Driver's Stress Event Detection</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2012-03</date><risdate>2012</risdate><volume>13</volume><issue>1</issue><spage>221</spage><epage>234</epage><pages>221-234</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>In this paper, a real-time methodology for the detection of stress events while driving is presented. The detection is based on the use of physiological signals, i.e., electrocardiogram, electrodermal activity, and respiration, as well as past observations of driving behavior. Features are calculated over windows of specific length and are introduced in a Bayesian network to detect driver's stress events. The accuracy of the stress event detection based only on physiological features, evaluated on a data set obtained in real driving conditions, resulted in an accuracy of 82%. Enhancement of the stress event detection model with the incorporation of driving event information has reduced false positives, yielding an increased accuracy of 96%. Furthermore, our methodology demonstrates good adaptability due to the application of online learning of the model parameters.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2011.2168215</doi><tpages>14</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2012-03, Vol.13 (1), p.221-234
issn 1524-9050
1558-0016
language eng
recordid cdi_ieee_primary_6036175
source IEEE Electronic Library (IEL)
subjects Accuracy
Bayesian networks (BNs)
driver stress
Driving
Driving conditions
driving environment
Estimation
Feature extraction
Heart rate variability
Kalman filter
Kalman filters
Mathematical models
Methodology
On-line systems
physiological signals
Real time
Real time systems
Stress
Stresses
Vehicles
title Real-Time Driver's Stress Event Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A23%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Driver's%20Stress%20Event%20Detection&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Rigas,%20G.&rft.date=2012-03&rft.volume=13&rft.issue=1&rft.spage=221&rft.epage=234&rft.pages=221-234&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2011.2168215&rft_dat=%3Cproquest_RIE%3E1019657521%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=923926826&rft_id=info:pmid/&rft_ieee_id=6036175&rfr_iscdi=true