New Designs for Deep Brain Transcranial Magnetic Stimulation

New applications for transcranial magnetic stimulation are developing rapidly for both diagnostic and therapeutic purposes. Therefore, so is the demand for improved performance, particularly in terms of the ability to stimulate deeper regions of the brain and to do so selectively. The coil designs t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2012-03, Vol.48 (3), p.1171-1178
Hauptverfasser: Williams, P. I., Marketos, P., Crowther, L. J., Jiles, D. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1178
container_issue 3
container_start_page 1171
container_title IEEE transactions on magnetics
container_volume 48
creator Williams, P. I.
Marketos, P.
Crowther, L. J.
Jiles, D. C.
description New applications for transcranial magnetic stimulation are developing rapidly for both diagnostic and therapeutic purposes. Therefore, so is the demand for improved performance, particularly in terms of the ability to stimulate deeper regions of the brain and to do so selectively. The coil designs that are used presently are limited in their ability to stimulate the brain at depth and with high spatial focality. Consequently, any improvement in coil performance would have a significant impact in extending the usefulness of TMS in both clinical applications and academic research studies. New and improved coil designs have been developed, modeled, and tested as a result of this work. A large magnetizing coil, 300 mm in diameter and compatible with a commercial TMS system, has been constructed to determine its feasibility for use as a deep brain stimulator. This coil, used in a Helmholtz configuration, can produce 105 V/m at the surface of the head and 93 V/m at a depth of 15.2 mm compared to a single turn 60 mm coil which produces 82.6 V/m at the surface and only 15 V/m at 15.2 mm. The results of this work have suggested directions that could be pursued in order to further improve the coil designs.
doi_str_mv 10.1109/TMAG.2011.2170703
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6035783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6035783</ieee_id><sourcerecordid>2600722211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-d511b5a26d72b903c8da2976b6a50d01711b201a31c320d89f8a7669d15b55be3</originalsourceid><addsrcrecordid>eNpdkM9LwzAUgIMoOKd_gHgpguCl872kSRvwolOnsOnBeQ5pmo6Mrp1Jh_jfm7Gxg5e8PN73fvARcokwQgR5N589TEYUEEcUc8iBHZEBygxTACGPyQAAi1RmIjslZyEsY5pxhAG5f7c_yZMNbtGGpO58_Nt18ui1a5O5120w8XG6SWZ60dremeSzd6tNo3vXtefkpNZNsBf7OCRfL8_z8Ws6_Zi8jR-mqWGc92nFEUuuqahyWkpgpqg0lbkoheZQAeaxHE_XDA2jUBWyLnQuhKyQl5yXlg3J7W7u2nffGxt6tXLB2KbRre02QaHIkUohECN6_Q9ddhvfxuuUpFwijYsihDvI-C4Eb2u19m6l_a9CUFudaqtTbXWqvc7Yc7MfrIPRTR21GBcOjZRzmVGRRe5qxzlr7aEsgPG8YOwPfZh6_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>925912201</pqid></control><display><type>article</type><title>New Designs for Deep Brain Transcranial Magnetic Stimulation</title><source>IEEE Electronic Library (IEL)</source><creator>Williams, P. I. ; Marketos, P. ; Crowther, L. J. ; Jiles, D. C.</creator><creatorcontrib>Williams, P. I. ; Marketos, P. ; Crowther, L. J. ; Jiles, D. C.</creatorcontrib><description>New applications for transcranial magnetic stimulation are developing rapidly for both diagnostic and therapeutic purposes. Therefore, so is the demand for improved performance, particularly in terms of the ability to stimulate deeper regions of the brain and to do so selectively. The coil designs that are used presently are limited in their ability to stimulate the brain at depth and with high spatial focality. Consequently, any improvement in coil performance would have a significant impact in extending the usefulness of TMS in both clinical applications and academic research studies. New and improved coil designs have been developed, modeled, and tested as a result of this work. A large magnetizing coil, 300 mm in diameter and compatible with a commercial TMS system, has been constructed to determine its feasibility for use as a deep brain stimulator. This coil, used in a Helmholtz configuration, can produce 105 V/m at the surface of the head and 93 V/m at a depth of 15.2 mm compared to a single turn 60 mm coil which produces 82.6 V/m at the surface and only 15 V/m at 15.2 mm. The results of this work have suggested directions that could be pursued in order to further improve the coil designs.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2011.2170703</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Brain ; Coiling ; Coils ; Compatibility ; Cross-disciplinary physics: materials science; rheology ; Data models ; Design engineering ; Electric fields ; electric fields electromagnetic modeling ; Exact sciences and technology ; Feasibility ; Magnetic field measurement ; Magnetic fields ; Magnetic flux density ; Magnetic heads ; Magnetism ; Materials science ; Other topics in materials science ; Performance enhancement ; Physics ; Stimulators ; Transcranial magnetic stimulation ; transcranial magnetic stimulation (TMS)</subject><ispartof>IEEE transactions on magnetics, 2012-03, Vol.48 (3), p.1171-1178</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2012</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-d511b5a26d72b903c8da2976b6a50d01711b201a31c320d89f8a7669d15b55be3</citedby><cites>FETCH-LOGICAL-c355t-d511b5a26d72b903c8da2976b6a50d01711b201a31c320d89f8a7669d15b55be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6035783$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6035783$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25594264$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Williams, P. I.</creatorcontrib><creatorcontrib>Marketos, P.</creatorcontrib><creatorcontrib>Crowther, L. J.</creatorcontrib><creatorcontrib>Jiles, D. C.</creatorcontrib><title>New Designs for Deep Brain Transcranial Magnetic Stimulation</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>New applications for transcranial magnetic stimulation are developing rapidly for both diagnostic and therapeutic purposes. Therefore, so is the demand for improved performance, particularly in terms of the ability to stimulate deeper regions of the brain and to do so selectively. The coil designs that are used presently are limited in their ability to stimulate the brain at depth and with high spatial focality. Consequently, any improvement in coil performance would have a significant impact in extending the usefulness of TMS in both clinical applications and academic research studies. New and improved coil designs have been developed, modeled, and tested as a result of this work. A large magnetizing coil, 300 mm in diameter and compatible with a commercial TMS system, has been constructed to determine its feasibility for use as a deep brain stimulator. This coil, used in a Helmholtz configuration, can produce 105 V/m at the surface of the head and 93 V/m at a depth of 15.2 mm compared to a single turn 60 mm coil which produces 82.6 V/m at the surface and only 15 V/m at 15.2 mm. The results of this work have suggested directions that could be pursued in order to further improve the coil designs.</description><subject>Brain</subject><subject>Coiling</subject><subject>Coils</subject><subject>Compatibility</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Data models</subject><subject>Design engineering</subject><subject>Electric fields</subject><subject>electric fields electromagnetic modeling</subject><subject>Exact sciences and technology</subject><subject>Feasibility</subject><subject>Magnetic field measurement</subject><subject>Magnetic fields</subject><subject>Magnetic flux density</subject><subject>Magnetic heads</subject><subject>Magnetism</subject><subject>Materials science</subject><subject>Other topics in materials science</subject><subject>Performance enhancement</subject><subject>Physics</subject><subject>Stimulators</subject><subject>Transcranial magnetic stimulation</subject><subject>transcranial magnetic stimulation (TMS)</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM9LwzAUgIMoOKd_gHgpguCl872kSRvwolOnsOnBeQ5pmo6Mrp1Jh_jfm7Gxg5e8PN73fvARcokwQgR5N589TEYUEEcUc8iBHZEBygxTACGPyQAAi1RmIjslZyEsY5pxhAG5f7c_yZMNbtGGpO58_Nt18ui1a5O5120w8XG6SWZ60dremeSzd6tNo3vXtefkpNZNsBf7OCRfL8_z8Ws6_Zi8jR-mqWGc92nFEUuuqahyWkpgpqg0lbkoheZQAeaxHE_XDA2jUBWyLnQuhKyQl5yXlg3J7W7u2nffGxt6tXLB2KbRre02QaHIkUohECN6_Q9ddhvfxuuUpFwijYsihDvI-C4Eb2u19m6l_a9CUFudaqtTbXWqvc7Yc7MfrIPRTR21GBcOjZRzmVGRRe5qxzlr7aEsgPG8YOwPfZh6_g</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Williams, P. I.</creator><creator>Marketos, P.</creator><creator>Crowther, L. J.</creator><creator>Jiles, D. C.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20120301</creationdate><title>New Designs for Deep Brain Transcranial Magnetic Stimulation</title><author>Williams, P. I. ; Marketos, P. ; Crowther, L. J. ; Jiles, D. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-d511b5a26d72b903c8da2976b6a50d01711b201a31c320d89f8a7669d15b55be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Brain</topic><topic>Coiling</topic><topic>Coils</topic><topic>Compatibility</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Data models</topic><topic>Design engineering</topic><topic>Electric fields</topic><topic>electric fields electromagnetic modeling</topic><topic>Exact sciences and technology</topic><topic>Feasibility</topic><topic>Magnetic field measurement</topic><topic>Magnetic fields</topic><topic>Magnetic flux density</topic><topic>Magnetic heads</topic><topic>Magnetism</topic><topic>Materials science</topic><topic>Other topics in materials science</topic><topic>Performance enhancement</topic><topic>Physics</topic><topic>Stimulators</topic><topic>Transcranial magnetic stimulation</topic><topic>transcranial magnetic stimulation (TMS)</topic><toplevel>online_resources</toplevel><creatorcontrib>Williams, P. I.</creatorcontrib><creatorcontrib>Marketos, P.</creatorcontrib><creatorcontrib>Crowther, L. J.</creatorcontrib><creatorcontrib>Jiles, D. C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Williams, P. I.</au><au>Marketos, P.</au><au>Crowther, L. J.</au><au>Jiles, D. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Designs for Deep Brain Transcranial Magnetic Stimulation</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2012-03-01</date><risdate>2012</risdate><volume>48</volume><issue>3</issue><spage>1171</spage><epage>1178</epage><pages>1171-1178</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>New applications for transcranial magnetic stimulation are developing rapidly for both diagnostic and therapeutic purposes. Therefore, so is the demand for improved performance, particularly in terms of the ability to stimulate deeper regions of the brain and to do so selectively. The coil designs that are used presently are limited in their ability to stimulate the brain at depth and with high spatial focality. Consequently, any improvement in coil performance would have a significant impact in extending the usefulness of TMS in both clinical applications and academic research studies. New and improved coil designs have been developed, modeled, and tested as a result of this work. A large magnetizing coil, 300 mm in diameter and compatible with a commercial TMS system, has been constructed to determine its feasibility for use as a deep brain stimulator. This coil, used in a Helmholtz configuration, can produce 105 V/m at the surface of the head and 93 V/m at a depth of 15.2 mm compared to a single turn 60 mm coil which produces 82.6 V/m at the surface and only 15 V/m at 15.2 mm. The results of this work have suggested directions that could be pursued in order to further improve the coil designs.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TMAG.2011.2170703</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2012-03, Vol.48 (3), p.1171-1178
issn 0018-9464
1941-0069
language eng
recordid cdi_ieee_primary_6035783
source IEEE Electronic Library (IEL)
subjects Brain
Coiling
Coils
Compatibility
Cross-disciplinary physics: materials science
rheology
Data models
Design engineering
Electric fields
electric fields electromagnetic modeling
Exact sciences and technology
Feasibility
Magnetic field measurement
Magnetic fields
Magnetic flux density
Magnetic heads
Magnetism
Materials science
Other topics in materials science
Performance enhancement
Physics
Stimulators
Transcranial magnetic stimulation
transcranial magnetic stimulation (TMS)
title New Designs for Deep Brain Transcranial Magnetic Stimulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A05%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Designs%20for%20Deep%20Brain%20Transcranial%20Magnetic%20Stimulation&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Williams,%20P.%20I.&rft.date=2012-03-01&rft.volume=48&rft.issue=3&rft.spage=1171&rft.epage=1178&rft.pages=1171-1178&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2011.2170703&rft_dat=%3Cproquest_RIE%3E2600722211%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=925912201&rft_id=info:pmid/&rft_ieee_id=6035783&rfr_iscdi=true