MultiPass lasso algorithms for sparse signal recovery

We develop the MultiPass Lasso (MPL) algorithm for sparse signal recovery. MPL applies the Lasso algorithm in a novel, sequential manner and has the following important attributes. First, MPL improves the estimation of the support of the sparse signal by combining high quality estimates of its parti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yuzhe Jin, Rao, B. D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1421
container_issue
container_start_page 1417
container_title
container_volume
creator Yuzhe Jin
Rao, B. D.
description We develop the MultiPass Lasso (MPL) algorithm for sparse signal recovery. MPL applies the Lasso algorithm in a novel, sequential manner and has the following important attributes. First, MPL improves the estimation of the support of the sparse signal by combining high quality estimates of its partial supports which are sequentially recovered via the Lasso algorithm in each iteration/pass. Second, the algorithm is capable of exploiting the dynamic range in the nonzero magnitudes. Preliminary theoretic analysis shows the potential performance improvement enabled by MPL over Lasso. In addition, we propose the Reweighted MultiPass Lasso algorithm which substitutes Lasso with MPL in each iteration of Reweighted ℓ 1 Minimization. Experimental results favorably support the advantages of the proposed algorithms in both reconstruction accuracy and computational efficiency, thereby supporting the potential of the MultiPass framework for algorithmic development.
doi_str_mv 10.1109/ISIT.2011.6033773
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6033773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6033773</ieee_id><sourcerecordid>6033773</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1283ea86dee2206172530eb58a4c0dfab7d214f72a3b8e36142ba9bd3dad3303</originalsourceid><addsrcrecordid>eNo1kM1KAzEUheMfWOs8gLjJC0y9N3fyt5RidaCi4OxLpsnUyNQpySj07S3YnsV3Fh-cxWHsDmGGCPah_qibmQDEmQIiremMFVYbrKTWIK2kczYRKHVpEPUFuzkJpS5PAqy8ZkXOX3CIUpbATJh8_enH-O5y5v0BA3f9Zkhx_Nxm3g2J551LOfAcN9-u5ymsh9-Q9rfsqnN9DsWxp6xZPDXzl3L59lzPH5dlRC3HEoWh4IzyIQgBCrWQBKGVxlVr8J1rtRdYdVo4ak0ghZVonW09eeeJgKbs_n82hhBWuxS3Lu1XxwPoD0gPSms</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>MultiPass lasso algorithms for sparse signal recovery</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yuzhe Jin ; Rao, B. D.</creator><creatorcontrib>Yuzhe Jin ; Rao, B. D.</creatorcontrib><description>We develop the MultiPass Lasso (MPL) algorithm for sparse signal recovery. MPL applies the Lasso algorithm in a novel, sequential manner and has the following important attributes. First, MPL improves the estimation of the support of the sparse signal by combining high quality estimates of its partial supports which are sequentially recovered via the Lasso algorithm in each iteration/pass. Second, the algorithm is capable of exploiting the dynamic range in the nonzero magnitudes. Preliminary theoretic analysis shows the potential performance improvement enabled by MPL over Lasso. In addition, we propose the Reweighted MultiPass Lasso algorithm which substitutes Lasso with MPL in each iteration of Reweighted ℓ 1 Minimization. Experimental results favorably support the advantages of the proposed algorithms in both reconstruction accuracy and computational efficiency, thereby supporting the potential of the MultiPass framework for algorithmic development.</description><identifier>ISSN: 2157-8095</identifier><identifier>ISBN: 1457705966</identifier><identifier>ISBN: 9781457705960</identifier><identifier>EISSN: 2157-8117</identifier><identifier>EISBN: 9781457705953</identifier><identifier>EISBN: 145770594X</identifier><identifier>EISBN: 9781457705946</identifier><identifier>EISBN: 1457705958</identifier><identifier>DOI: 10.1109/ISIT.2011.6033773</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Compressed sensing ; Computational efficiency ; group detector ; Heuristic algorithms ; Matching pursuit algorithms ; Minimization ; MultiPass Lasso ; multiuser detection ; Noise measurement ; Reweighted MultiPass Lasso ; Sparse signal recovery</subject><ispartof>2011 IEEE International Symposium on Information Theory Proceedings, 2011, p.1417-1421</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6033773$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6033773$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yuzhe Jin</creatorcontrib><creatorcontrib>Rao, B. D.</creatorcontrib><title>MultiPass lasso algorithms for sparse signal recovery</title><title>2011 IEEE International Symposium on Information Theory Proceedings</title><addtitle>ISIT</addtitle><description>We develop the MultiPass Lasso (MPL) algorithm for sparse signal recovery. MPL applies the Lasso algorithm in a novel, sequential manner and has the following important attributes. First, MPL improves the estimation of the support of the sparse signal by combining high quality estimates of its partial supports which are sequentially recovered via the Lasso algorithm in each iteration/pass. Second, the algorithm is capable of exploiting the dynamic range in the nonzero magnitudes. Preliminary theoretic analysis shows the potential performance improvement enabled by MPL over Lasso. In addition, we propose the Reweighted MultiPass Lasso algorithm which substitutes Lasso with MPL in each iteration of Reweighted ℓ 1 Minimization. Experimental results favorably support the advantages of the proposed algorithms in both reconstruction accuracy and computational efficiency, thereby supporting the potential of the MultiPass framework for algorithmic development.</description><subject>Algorithm design and analysis</subject><subject>Compressed sensing</subject><subject>Computational efficiency</subject><subject>group detector</subject><subject>Heuristic algorithms</subject><subject>Matching pursuit algorithms</subject><subject>Minimization</subject><subject>MultiPass Lasso</subject><subject>multiuser detection</subject><subject>Noise measurement</subject><subject>Reweighted MultiPass Lasso</subject><subject>Sparse signal recovery</subject><issn>2157-8095</issn><issn>2157-8117</issn><isbn>1457705966</isbn><isbn>9781457705960</isbn><isbn>9781457705953</isbn><isbn>145770594X</isbn><isbn>9781457705946</isbn><isbn>1457705958</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kM1KAzEUheMfWOs8gLjJC0y9N3fyt5RidaCi4OxLpsnUyNQpySj07S3YnsV3Fh-cxWHsDmGGCPah_qibmQDEmQIiremMFVYbrKTWIK2kczYRKHVpEPUFuzkJpS5PAqy8ZkXOX3CIUpbATJh8_enH-O5y5v0BA3f9Zkhx_Nxm3g2J551LOfAcN9-u5ymsh9-Q9rfsqnN9DsWxp6xZPDXzl3L59lzPH5dlRC3HEoWh4IzyIQgBCrWQBKGVxlVr8J1rtRdYdVo4ak0ghZVonW09eeeJgKbs_n82hhBWuxS3Lu1XxwPoD0gPSms</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Yuzhe Jin</creator><creator>Rao, B. D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201107</creationdate><title>MultiPass lasso algorithms for sparse signal recovery</title><author>Yuzhe Jin ; Rao, B. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1283ea86dee2206172530eb58a4c0dfab7d214f72a3b8e36142ba9bd3dad3303</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithm design and analysis</topic><topic>Compressed sensing</topic><topic>Computational efficiency</topic><topic>group detector</topic><topic>Heuristic algorithms</topic><topic>Matching pursuit algorithms</topic><topic>Minimization</topic><topic>MultiPass Lasso</topic><topic>multiuser detection</topic><topic>Noise measurement</topic><topic>Reweighted MultiPass Lasso</topic><topic>Sparse signal recovery</topic><toplevel>online_resources</toplevel><creatorcontrib>Yuzhe Jin</creatorcontrib><creatorcontrib>Rao, B. D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yuzhe Jin</au><au>Rao, B. D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>MultiPass lasso algorithms for sparse signal recovery</atitle><btitle>2011 IEEE International Symposium on Information Theory Proceedings</btitle><stitle>ISIT</stitle><date>2011-07</date><risdate>2011</risdate><spage>1417</spage><epage>1421</epage><pages>1417-1421</pages><issn>2157-8095</issn><eissn>2157-8117</eissn><isbn>1457705966</isbn><isbn>9781457705960</isbn><eisbn>9781457705953</eisbn><eisbn>145770594X</eisbn><eisbn>9781457705946</eisbn><eisbn>1457705958</eisbn><abstract>We develop the MultiPass Lasso (MPL) algorithm for sparse signal recovery. MPL applies the Lasso algorithm in a novel, sequential manner and has the following important attributes. First, MPL improves the estimation of the support of the sparse signal by combining high quality estimates of its partial supports which are sequentially recovered via the Lasso algorithm in each iteration/pass. Second, the algorithm is capable of exploiting the dynamic range in the nonzero magnitudes. Preliminary theoretic analysis shows the potential performance improvement enabled by MPL over Lasso. In addition, we propose the Reweighted MultiPass Lasso algorithm which substitutes Lasso with MPL in each iteration of Reweighted ℓ 1 Minimization. Experimental results favorably support the advantages of the proposed algorithms in both reconstruction accuracy and computational efficiency, thereby supporting the potential of the MultiPass framework for algorithmic development.</abstract><pub>IEEE</pub><doi>10.1109/ISIT.2011.6033773</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2157-8095
ispartof 2011 IEEE International Symposium on Information Theory Proceedings, 2011, p.1417-1421
issn 2157-8095
2157-8117
language eng
recordid cdi_ieee_primary_6033773
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Compressed sensing
Computational efficiency
group detector
Heuristic algorithms
Matching pursuit algorithms
Minimization
MultiPass Lasso
multiuser detection
Noise measurement
Reweighted MultiPass Lasso
Sparse signal recovery
title MultiPass lasso algorithms for sparse signal recovery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A29%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=MultiPass%20lasso%20algorithms%20for%20sparse%20signal%20recovery&rft.btitle=2011%20IEEE%20International%20Symposium%20on%20Information%20Theory%20Proceedings&rft.au=Yuzhe%20Jin&rft.date=2011-07&rft.spage=1417&rft.epage=1421&rft.pages=1417-1421&rft.issn=2157-8095&rft.eissn=2157-8117&rft.isbn=1457705966&rft.isbn_list=9781457705960&rft_id=info:doi/10.1109/ISIT.2011.6033773&rft_dat=%3Cieee_6IE%3E6033773%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457705953&rft.eisbn_list=145770594X&rft.eisbn_list=9781457705946&rft.eisbn_list=1457705958&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6033773&rfr_iscdi=true