A novel multilayer neural network model for TOA-based localization in wireless sensor networks

A novel multilayer neural network model, called artificial synaptic network, was designed and implemented for single sensor localization with time-of-arrival (TOA) measurements. In the TOA localization problem, the location of a source sensor is estimated based on its distance from a number of ancho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Vaghefi, S. Y. M., Vaghefi, R. M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3084
container_issue
container_start_page 3079
container_title
container_volume
creator Vaghefi, S. Y. M.
Vaghefi, R. M.
description A novel multilayer neural network model, called artificial synaptic network, was designed and implemented for single sensor localization with time-of-arrival (TOA) measurements. In the TOA localization problem, the location of a source sensor is estimated based on its distance from a number of anchor sensors. The measured distance values are noisy and the estimator should be able to handle different amounts of noise. Three neural network models: the proposed artificial synaptic network, a multi-layer perceptron network, and a generalized radial basis functions network were applied to the TOA localization problem. The performance of the models was compared with one another. The efficiency of the models was calculated based on the memory cost. The study result shows that the proposed artificial synaptic network has the lowest RMS error and highest efficiency. The robustness of the artificial synaptic network was compared with that of the least square (LS) method and the weighted least square (WLS) method. The Cramer-Rao lower bound (CRLB) of TOA localization was used as a benchmark. The model's robustness in high noise is better than the WLS method and remarkably close to the CRLB.
doi_str_mv 10.1109/IJCNN.2011.6033628
format Conference Proceeding
fullrecord <record><control><sourceid>swepub_6IE</sourceid><recordid>TN_cdi_ieee_primary_6033628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6033628</ieee_id><sourcerecordid>oai_research_chalmers_se_009887d1_3465_4b18_bc00_0d440cf89d8a</sourcerecordid><originalsourceid>FETCH-LOGICAL-i2108-adf9550240a25aa4cf7d160dbbecb6e95e12d9a0b1e08ed10a9c256b830a0dbe3</originalsourceid><addsrcrecordid>eNo9kM1OGzEUhU2hUgnlBdqNX2DC9c849jKKWkqFYAFsa12P7wi3zkxkJ43g6TtSkq7O4rvnu9Jh7IuAuRDgbu5-rh4e5hKEmBtQykh7xq7dwgottXZGmfYDu5TCiEZrWJyz2Qm0i4sTUE59YrNafwNI5Zy6ZL-WfBj_UubrXd6mjG9U-EC7gnmK7X4sf_h6jBPvx8KfH5dNwEqR57HDnN5xm8aBp4HvU6FMtfJKQx3LqVs_s4895krXx7xiL9-_Pa9-NPePt3er5X2TpADbYOxd24LUgLJF1F2_iMJADIG6YMi1JGR0CEEQWIoC0HWyNcEqwOmK1BV7Onjrnja74DclrbG8-RGTL1QJS_fqu1fMayrVV_IAztrpiVfatF4HYX3oADzEab2uty5anKxfD9ZERP-dx_XVPwyydlQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A novel multilayer neural network model for TOA-based localization in wireless sensor networks</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Vaghefi, S. Y. M. ; Vaghefi, R. M.</creator><creatorcontrib>Vaghefi, S. Y. M. ; Vaghefi, R. M.</creatorcontrib><description>A novel multilayer neural network model, called artificial synaptic network, was designed and implemented for single sensor localization with time-of-arrival (TOA) measurements. In the TOA localization problem, the location of a source sensor is estimated based on its distance from a number of anchor sensors. The measured distance values are noisy and the estimator should be able to handle different amounts of noise. Three neural network models: the proposed artificial synaptic network, a multi-layer perceptron network, and a generalized radial basis functions network were applied to the TOA localization problem. The performance of the models was compared with one another. The efficiency of the models was calculated based on the memory cost. The study result shows that the proposed artificial synaptic network has the lowest RMS error and highest efficiency. The robustness of the artificial synaptic network was compared with that of the least square (LS) method and the weighted least square (WLS) method. The Cramer-Rao lower bound (CRLB) of TOA localization was used as a benchmark. The model's robustness in high noise is better than the WLS method and remarkably close to the CRLB.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISBN: 1424496357</identifier><identifier>ISBN: 9781424496358</identifier><identifier>ISBN: 9781457710865</identifier><identifier>ISBN: 1457710862</identifier><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 9781424496365</identifier><identifier>EISBN: 1424496365</identifier><identifier>EISBN: 9781424496372</identifier><identifier>EISBN: 1424496373</identifier><identifier>DOI: 10.1109/IJCNN.2011.6033628</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Mathematical model ; Neurons ; Noise ; Noise measurement ; Robustness ; Training</subject><ispartof>2011 International Joint Conference on Neural Network, IJCNN 2011; San Jose, CA; 31 July 2011 through 5 August 2011, 2011, p.3079-3084</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6033628$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,309,310,552,780,784,789,790,885,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6033628$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://research.chalmers.se/publication/148923$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Vaghefi, S. Y. M.</creatorcontrib><creatorcontrib>Vaghefi, R. M.</creatorcontrib><title>A novel multilayer neural network model for TOA-based localization in wireless sensor networks</title><title>2011 International Joint Conference on Neural Network, IJCNN 2011; San Jose, CA; 31 July 2011 through 5 August 2011</title><addtitle>IJCNN</addtitle><description>A novel multilayer neural network model, called artificial synaptic network, was designed and implemented for single sensor localization with time-of-arrival (TOA) measurements. In the TOA localization problem, the location of a source sensor is estimated based on its distance from a number of anchor sensors. The measured distance values are noisy and the estimator should be able to handle different amounts of noise. Three neural network models: the proposed artificial synaptic network, a multi-layer perceptron network, and a generalized radial basis functions network were applied to the TOA localization problem. The performance of the models was compared with one another. The efficiency of the models was calculated based on the memory cost. The study result shows that the proposed artificial synaptic network has the lowest RMS error and highest efficiency. The robustness of the artificial synaptic network was compared with that of the least square (LS) method and the weighted least square (WLS) method. The Cramer-Rao lower bound (CRLB) of TOA localization was used as a benchmark. The model's robustness in high noise is better than the WLS method and remarkably close to the CRLB.</description><subject>Computational modeling</subject><subject>Mathematical model</subject><subject>Neurons</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Robustness</subject><subject>Training</subject><issn>2161-4393</issn><issn>2161-4407</issn><isbn>1424496357</isbn><isbn>9781424496358</isbn><isbn>9781457710865</isbn><isbn>1457710862</isbn><isbn>9781424496365</isbn><isbn>1424496365</isbn><isbn>9781424496372</isbn><isbn>1424496373</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><sourceid>D8T</sourceid><recordid>eNo9kM1OGzEUhU2hUgnlBdqNX2DC9c849jKKWkqFYAFsa12P7wi3zkxkJ43g6TtSkq7O4rvnu9Jh7IuAuRDgbu5-rh4e5hKEmBtQykh7xq7dwgottXZGmfYDu5TCiEZrWJyz2Qm0i4sTUE59YrNafwNI5Zy6ZL-WfBj_UubrXd6mjG9U-EC7gnmK7X4sf_h6jBPvx8KfH5dNwEqR57HDnN5xm8aBp4HvU6FMtfJKQx3LqVs_s4895krXx7xiL9-_Pa9-NPePt3er5X2TpADbYOxd24LUgLJF1F2_iMJADIG6YMi1JGR0CEEQWIoC0HWyNcEqwOmK1BV7Onjrnja74DclrbG8-RGTL1QJS_fqu1fMayrVV_IAztrpiVfatF4HYX3oADzEab2uty5anKxfD9ZERP-dx_XVPwyydlQ</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Vaghefi, S. Y. M.</creator><creator>Vaghefi, R. M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>ABBSD</scope><scope>ADTPV</scope><scope>BNKNJ</scope><scope>BVBDO</scope><scope>D8T</scope><scope>F1S</scope></search><sort><creationdate>2011</creationdate><title>A novel multilayer neural network model for TOA-based localization in wireless sensor networks</title><author>Vaghefi, S. Y. M. ; Vaghefi, R. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i2108-adf9550240a25aa4cf7d160dbbecb6e95e12d9a0b1e08ed10a9c256b830a0dbe3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computational modeling</topic><topic>Mathematical model</topic><topic>Neurons</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Robustness</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Vaghefi, S. Y. M.</creatorcontrib><creatorcontrib>Vaghefi, R. M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>SWEPUB Chalmers tekniska högskola full text</collection><collection>SwePub</collection><collection>SwePub Conference</collection><collection>SwePub Conference full text</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Chalmers tekniska högskola</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vaghefi, S. Y. M.</au><au>Vaghefi, R. M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A novel multilayer neural network model for TOA-based localization in wireless sensor networks</atitle><btitle>2011 International Joint Conference on Neural Network, IJCNN 2011; San Jose, CA; 31 July 2011 through 5 August 2011</btitle><stitle>IJCNN</stitle><date>2011</date><risdate>2011</risdate><spage>3079</spage><epage>3084</epage><pages>3079-3084</pages><issn>2161-4393</issn><eissn>2161-4407</eissn><isbn>1424496357</isbn><isbn>9781424496358</isbn><isbn>9781457710865</isbn><isbn>1457710862</isbn><eisbn>9781424496365</eisbn><eisbn>1424496365</eisbn><eisbn>9781424496372</eisbn><eisbn>1424496373</eisbn><abstract>A novel multilayer neural network model, called artificial synaptic network, was designed and implemented for single sensor localization with time-of-arrival (TOA) measurements. In the TOA localization problem, the location of a source sensor is estimated based on its distance from a number of anchor sensors. The measured distance values are noisy and the estimator should be able to handle different amounts of noise. Three neural network models: the proposed artificial synaptic network, a multi-layer perceptron network, and a generalized radial basis functions network were applied to the TOA localization problem. The performance of the models was compared with one another. The efficiency of the models was calculated based on the memory cost. The study result shows that the proposed artificial synaptic network has the lowest RMS error and highest efficiency. The robustness of the artificial synaptic network was compared with that of the least square (LS) method and the weighted least square (WLS) method. The Cramer-Rao lower bound (CRLB) of TOA localization was used as a benchmark. The model's robustness in high noise is better than the WLS method and remarkably close to the CRLB.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2011.6033628</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2161-4393
ispartof 2011 International Joint Conference on Neural Network, IJCNN 2011; San Jose, CA; 31 July 2011 through 5 August 2011, 2011, p.3079-3084
issn 2161-4393
2161-4407
language eng
recordid cdi_ieee_primary_6033628
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computational modeling
Mathematical model
Neurons
Noise
Noise measurement
Robustness
Training
title A novel multilayer neural network model for TOA-based localization in wireless sensor networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A12%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20novel%20multilayer%20neural%20network%20model%20for%20TOA-based%20localization%20in%20wireless%20sensor%20networks&rft.btitle=2011%20International%20Joint%20Conference%20on%20Neural%20Network,%20IJCNN%202011;%20San%20Jose,%20CA;%2031%20July%202011%20through%205%20August%202011&rft.au=Vaghefi,%20S.%20Y.%20M.&rft.date=2011&rft.spage=3079&rft.epage=3084&rft.pages=3079-3084&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=1424496357&rft.isbn_list=9781424496358&rft.isbn_list=9781457710865&rft.isbn_list=1457710862&rft_id=info:doi/10.1109/IJCNN.2011.6033628&rft_dat=%3Cswepub_6IE%3Eoai_research_chalmers_se_009887d1_3465_4b18_bc00_0d440cf89d8a%3C/swepub_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424496365&rft.eisbn_list=1424496365&rft.eisbn_list=9781424496372&rft.eisbn_list=1424496373&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6033628&rfr_iscdi=true