Parameter selection for smoothing splines using Stein's Unbiased Risk Estimator
A challenging problem in smoothing spline regression is determining a value for the smoothing parameter. The parameter establishes the tradeoff between the closeness of the data, versus the smoothness of the regression function. This paper proposes a new method of finding the optimum smoothness valu...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2740 |
---|---|
container_issue | |
container_start_page | 2733 |
container_title | |
container_volume | |
creator | Seifzadeh, S. Rostami, M. Ghodsi, A. Karray, F. |
description | A challenging problem in smoothing spline regression is determining a value for the smoothing parameter. The parameter establishes the tradeoff between the closeness of the data, versus the smoothness of the regression function. This paper proposes a new method of finding the optimum smoothness value based on Stein's Unbiased Risk Estimator (SURE). This approach employs Newton's method to solve for the optimal value directly, while minimizing the true error of the regression. Experimental results demonstrate the effectiveness of this method, particularly for small datasets. |
doi_str_mv | 10.1109/IJCNN.2011.6033577 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6033577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6033577</ieee_id><sourcerecordid>6033577</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-e36eecc34eef58c7a5f9c81e55f9c42e7f26d1afe78a6e036314b5c8477df2613</originalsourceid><addsrcrecordid>eNo1kMtOwzAURM1Loi39Adh4xyrB9vUjXqKoQFHVIijryk1uwJBHFZsFf08q2tXo6Egz0hByzVnKObN38-d8uUwF4zzVDEAZc0Km1mRcCimtBq1OyUhwzRMpmTkj46NQ5vwowMIlGYfwxZgAa2FEVi-udw1G7GnAGovou5ZW3UBN18VP337QsKt9i4H-hD29RfTtbaDv7da7gCV99eGbzkL0jYtdf0UuKlcHnB5yQtYPs3X-lCxWj_P8fpF4y2KCoBGLAiRipbLCOFXZIuOo9ikFmkrokrsKTeY0MtDA5VYVmTSmHBSHCbn5r_WIuNn1w3j_uzn8An9lEFQY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Parameter selection for smoothing splines using Stein's Unbiased Risk Estimator</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Seifzadeh, S. ; Rostami, M. ; Ghodsi, A. ; Karray, F.</creator><creatorcontrib>Seifzadeh, S. ; Rostami, M. ; Ghodsi, A. ; Karray, F.</creatorcontrib><description>A challenging problem in smoothing spline regression is determining a value for the smoothing parameter. The parameter establishes the tradeoff between the closeness of the data, versus the smoothness of the regression function. This paper proposes a new method of finding the optimum smoothness value based on Stein's Unbiased Risk Estimator (SURE). This approach employs Newton's method to solve for the optimal value directly, while minimizing the true error of the regression. Experimental results demonstrate the effectiveness of this method, particularly for small datasets.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISBN: 1424496357</identifier><identifier>ISBN: 9781424496358</identifier><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 9781424496365</identifier><identifier>EISBN: 1424496365</identifier><identifier>EISBN: 9781424496372</identifier><identifier>EISBN: 1424496373</identifier><identifier>DOI: 10.1109/IJCNN.2011.6033577</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Data models ; Polynomials ; Smoothing methods ; Spline ; Training ; Training data</subject><ispartof>The 2011 International Joint Conference on Neural Networks, 2011, p.2733-2740</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6033577$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6033577$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Seifzadeh, S.</creatorcontrib><creatorcontrib>Rostami, M.</creatorcontrib><creatorcontrib>Ghodsi, A.</creatorcontrib><creatorcontrib>Karray, F.</creatorcontrib><title>Parameter selection for smoothing splines using Stein's Unbiased Risk Estimator</title><title>The 2011 International Joint Conference on Neural Networks</title><addtitle>IJCNN</addtitle><description>A challenging problem in smoothing spline regression is determining a value for the smoothing parameter. The parameter establishes the tradeoff between the closeness of the data, versus the smoothness of the regression function. This paper proposes a new method of finding the optimum smoothness value based on Stein's Unbiased Risk Estimator (SURE). This approach employs Newton's method to solve for the optimal value directly, while minimizing the true error of the regression. Experimental results demonstrate the effectiveness of this method, particularly for small datasets.</description><subject>Computational modeling</subject><subject>Data models</subject><subject>Polynomials</subject><subject>Smoothing methods</subject><subject>Spline</subject><subject>Training</subject><subject>Training data</subject><issn>2161-4393</issn><issn>2161-4407</issn><isbn>1424496357</isbn><isbn>9781424496358</isbn><isbn>9781424496365</isbn><isbn>1424496365</isbn><isbn>9781424496372</isbn><isbn>1424496373</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtOwzAURM1Loi39Adh4xyrB9vUjXqKoQFHVIijryk1uwJBHFZsFf08q2tXo6Egz0hByzVnKObN38-d8uUwF4zzVDEAZc0Km1mRcCimtBq1OyUhwzRMpmTkj46NQ5vwowMIlGYfwxZgAa2FEVi-udw1G7GnAGovou5ZW3UBN18VP337QsKt9i4H-hD29RfTtbaDv7da7gCV99eGbzkL0jYtdf0UuKlcHnB5yQtYPs3X-lCxWj_P8fpF4y2KCoBGLAiRipbLCOFXZIuOo9ikFmkrokrsKTeY0MtDA5VYVmTSmHBSHCbn5r_WIuNn1w3j_uzn8An9lEFQY</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Seifzadeh, S.</creator><creator>Rostami, M.</creator><creator>Ghodsi, A.</creator><creator>Karray, F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201107</creationdate><title>Parameter selection for smoothing splines using Stein's Unbiased Risk Estimator</title><author>Seifzadeh, S. ; Rostami, M. ; Ghodsi, A. ; Karray, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-e36eecc34eef58c7a5f9c81e55f9c42e7f26d1afe78a6e036314b5c8477df2613</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computational modeling</topic><topic>Data models</topic><topic>Polynomials</topic><topic>Smoothing methods</topic><topic>Spline</topic><topic>Training</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Seifzadeh, S.</creatorcontrib><creatorcontrib>Rostami, M.</creatorcontrib><creatorcontrib>Ghodsi, A.</creatorcontrib><creatorcontrib>Karray, F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Seifzadeh, S.</au><au>Rostami, M.</au><au>Ghodsi, A.</au><au>Karray, F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Parameter selection for smoothing splines using Stein's Unbiased Risk Estimator</atitle><btitle>The 2011 International Joint Conference on Neural Networks</btitle><stitle>IJCNN</stitle><date>2011-07</date><risdate>2011</risdate><spage>2733</spage><epage>2740</epage><pages>2733-2740</pages><issn>2161-4393</issn><eissn>2161-4407</eissn><isbn>1424496357</isbn><isbn>9781424496358</isbn><eisbn>9781424496365</eisbn><eisbn>1424496365</eisbn><eisbn>9781424496372</eisbn><eisbn>1424496373</eisbn><abstract>A challenging problem in smoothing spline regression is determining a value for the smoothing parameter. The parameter establishes the tradeoff between the closeness of the data, versus the smoothness of the regression function. This paper proposes a new method of finding the optimum smoothness value based on Stein's Unbiased Risk Estimator (SURE). This approach employs Newton's method to solve for the optimal value directly, while minimizing the true error of the regression. Experimental results demonstrate the effectiveness of this method, particularly for small datasets.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2011.6033577</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2161-4393 |
ispartof | The 2011 International Joint Conference on Neural Networks, 2011, p.2733-2740 |
issn | 2161-4393 2161-4407 |
language | eng |
recordid | cdi_ieee_primary_6033577 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Computational modeling Data models Polynomials Smoothing methods Spline Training Training data |
title | Parameter selection for smoothing splines using Stein's Unbiased Risk Estimator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A23%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Parameter%20selection%20for%20smoothing%20splines%20using%20Stein's%20Unbiased%20Risk%20Estimator&rft.btitle=The%202011%20International%20Joint%20Conference%20on%20Neural%20Networks&rft.au=Seifzadeh,%20S.&rft.date=2011-07&rft.spage=2733&rft.epage=2740&rft.pages=2733-2740&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=1424496357&rft.isbn_list=9781424496358&rft_id=info:doi/10.1109/IJCNN.2011.6033577&rft_dat=%3Cieee_6IE%3E6033577%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424496365&rft.eisbn_list=1424496365&rft.eisbn_list=9781424496372&rft.eisbn_list=1424496373&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6033577&rfr_iscdi=true |