Parameter selection for smoothing splines using Stein's Unbiased Risk Estimator

A challenging problem in smoothing spline regression is determining a value for the smoothing parameter. The parameter establishes the tradeoff between the closeness of the data, versus the smoothness of the regression function. This paper proposes a new method of finding the optimum smoothness valu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Seifzadeh, S., Rostami, M., Ghodsi, A., Karray, F.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2740
container_issue
container_start_page 2733
container_title
container_volume
creator Seifzadeh, S.
Rostami, M.
Ghodsi, A.
Karray, F.
description A challenging problem in smoothing spline regression is determining a value for the smoothing parameter. The parameter establishes the tradeoff between the closeness of the data, versus the smoothness of the regression function. This paper proposes a new method of finding the optimum smoothness value based on Stein's Unbiased Risk Estimator (SURE). This approach employs Newton's method to solve for the optimal value directly, while minimizing the true error of the regression. Experimental results demonstrate the effectiveness of this method, particularly for small datasets.
doi_str_mv 10.1109/IJCNN.2011.6033577
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6033577</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6033577</ieee_id><sourcerecordid>6033577</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-e36eecc34eef58c7a5f9c81e55f9c42e7f26d1afe78a6e036314b5c8477df2613</originalsourceid><addsrcrecordid>eNo1kMtOwzAURM1Loi39Adh4xyrB9vUjXqKoQFHVIijryk1uwJBHFZsFf08q2tXo6Egz0hByzVnKObN38-d8uUwF4zzVDEAZc0Km1mRcCimtBq1OyUhwzRMpmTkj46NQ5vwowMIlGYfwxZgAa2FEVi-udw1G7GnAGovou5ZW3UBN18VP337QsKt9i4H-hD29RfTtbaDv7da7gCV99eGbzkL0jYtdf0UuKlcHnB5yQtYPs3X-lCxWj_P8fpF4y2KCoBGLAiRipbLCOFXZIuOo9ikFmkrokrsKTeY0MtDA5VYVmTSmHBSHCbn5r_WIuNn1w3j_uzn8An9lEFQY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Parameter selection for smoothing splines using Stein's Unbiased Risk Estimator</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Seifzadeh, S. ; Rostami, M. ; Ghodsi, A. ; Karray, F.</creator><creatorcontrib>Seifzadeh, S. ; Rostami, M. ; Ghodsi, A. ; Karray, F.</creatorcontrib><description>A challenging problem in smoothing spline regression is determining a value for the smoothing parameter. The parameter establishes the tradeoff between the closeness of the data, versus the smoothness of the regression function. This paper proposes a new method of finding the optimum smoothness value based on Stein's Unbiased Risk Estimator (SURE). This approach employs Newton's method to solve for the optimal value directly, while minimizing the true error of the regression. Experimental results demonstrate the effectiveness of this method, particularly for small datasets.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISBN: 1424496357</identifier><identifier>ISBN: 9781424496358</identifier><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 9781424496365</identifier><identifier>EISBN: 1424496365</identifier><identifier>EISBN: 9781424496372</identifier><identifier>EISBN: 1424496373</identifier><identifier>DOI: 10.1109/IJCNN.2011.6033577</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Data models ; Polynomials ; Smoothing methods ; Spline ; Training ; Training data</subject><ispartof>The 2011 International Joint Conference on Neural Networks, 2011, p.2733-2740</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6033577$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6033577$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Seifzadeh, S.</creatorcontrib><creatorcontrib>Rostami, M.</creatorcontrib><creatorcontrib>Ghodsi, A.</creatorcontrib><creatorcontrib>Karray, F.</creatorcontrib><title>Parameter selection for smoothing splines using Stein's Unbiased Risk Estimator</title><title>The 2011 International Joint Conference on Neural Networks</title><addtitle>IJCNN</addtitle><description>A challenging problem in smoothing spline regression is determining a value for the smoothing parameter. The parameter establishes the tradeoff between the closeness of the data, versus the smoothness of the regression function. This paper proposes a new method of finding the optimum smoothness value based on Stein's Unbiased Risk Estimator (SURE). This approach employs Newton's method to solve for the optimal value directly, while minimizing the true error of the regression. Experimental results demonstrate the effectiveness of this method, particularly for small datasets.</description><subject>Computational modeling</subject><subject>Data models</subject><subject>Polynomials</subject><subject>Smoothing methods</subject><subject>Spline</subject><subject>Training</subject><subject>Training data</subject><issn>2161-4393</issn><issn>2161-4407</issn><isbn>1424496357</isbn><isbn>9781424496358</isbn><isbn>9781424496365</isbn><isbn>1424496365</isbn><isbn>9781424496372</isbn><isbn>1424496373</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kMtOwzAURM1Loi39Adh4xyrB9vUjXqKoQFHVIijryk1uwJBHFZsFf08q2tXo6Egz0hByzVnKObN38-d8uUwF4zzVDEAZc0Km1mRcCimtBq1OyUhwzRMpmTkj46NQ5vwowMIlGYfwxZgAa2FEVi-udw1G7GnAGovou5ZW3UBN18VP337QsKt9i4H-hD29RfTtbaDv7da7gCV99eGbzkL0jYtdf0UuKlcHnB5yQtYPs3X-lCxWj_P8fpF4y2KCoBGLAiRipbLCOFXZIuOo9ikFmkrokrsKTeY0MtDA5VYVmTSmHBSHCbn5r_WIuNn1w3j_uzn8An9lEFQY</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Seifzadeh, S.</creator><creator>Rostami, M.</creator><creator>Ghodsi, A.</creator><creator>Karray, F.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201107</creationdate><title>Parameter selection for smoothing splines using Stein's Unbiased Risk Estimator</title><author>Seifzadeh, S. ; Rostami, M. ; Ghodsi, A. ; Karray, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-e36eecc34eef58c7a5f9c81e55f9c42e7f26d1afe78a6e036314b5c8477df2613</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computational modeling</topic><topic>Data models</topic><topic>Polynomials</topic><topic>Smoothing methods</topic><topic>Spline</topic><topic>Training</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Seifzadeh, S.</creatorcontrib><creatorcontrib>Rostami, M.</creatorcontrib><creatorcontrib>Ghodsi, A.</creatorcontrib><creatorcontrib>Karray, F.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Seifzadeh, S.</au><au>Rostami, M.</au><au>Ghodsi, A.</au><au>Karray, F.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Parameter selection for smoothing splines using Stein's Unbiased Risk Estimator</atitle><btitle>The 2011 International Joint Conference on Neural Networks</btitle><stitle>IJCNN</stitle><date>2011-07</date><risdate>2011</risdate><spage>2733</spage><epage>2740</epage><pages>2733-2740</pages><issn>2161-4393</issn><eissn>2161-4407</eissn><isbn>1424496357</isbn><isbn>9781424496358</isbn><eisbn>9781424496365</eisbn><eisbn>1424496365</eisbn><eisbn>9781424496372</eisbn><eisbn>1424496373</eisbn><abstract>A challenging problem in smoothing spline regression is determining a value for the smoothing parameter. The parameter establishes the tradeoff between the closeness of the data, versus the smoothness of the regression function. This paper proposes a new method of finding the optimum smoothness value based on Stein's Unbiased Risk Estimator (SURE). This approach employs Newton's method to solve for the optimal value directly, while minimizing the true error of the regression. Experimental results demonstrate the effectiveness of this method, particularly for small datasets.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2011.6033577</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2161-4393
ispartof The 2011 International Joint Conference on Neural Networks, 2011, p.2733-2740
issn 2161-4393
2161-4407
language eng
recordid cdi_ieee_primary_6033577
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computational modeling
Data models
Polynomials
Smoothing methods
Spline
Training
Training data
title Parameter selection for smoothing splines using Stein's Unbiased Risk Estimator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A23%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Parameter%20selection%20for%20smoothing%20splines%20using%20Stein's%20Unbiased%20Risk%20Estimator&rft.btitle=The%202011%20International%20Joint%20Conference%20on%20Neural%20Networks&rft.au=Seifzadeh,%20S.&rft.date=2011-07&rft.spage=2733&rft.epage=2740&rft.pages=2733-2740&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=1424496357&rft.isbn_list=9781424496358&rft_id=info:doi/10.1109/IJCNN.2011.6033577&rft_dat=%3Cieee_6IE%3E6033577%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424496365&rft.eisbn_list=1424496365&rft.eisbn_list=9781424496372&rft.eisbn_list=1424496373&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6033577&rfr_iscdi=true