Lag selection for time series forecasting using Particle Swarm Optimization

The time series forecasting is an useful application for many areas of knowledge such as biology, economics, climatology, biology, among others. A very important step for time series prediction is the correct selection of the past observations (lags). This paper uses a new algorithm based in swarm o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ribeiro, G. H. T., de M Neto, P. S. G., Cavalcanti, G. D. C., Ing Ren Tsang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2444
container_issue
container_start_page 2437
container_title
container_volume
creator Ribeiro, G. H. T.
de M Neto, P. S. G.
Cavalcanti, G. D. C.
Ing Ren Tsang
description The time series forecasting is an useful application for many areas of knowledge such as biology, economics, climatology, biology, among others. A very important step for time series prediction is the correct selection of the past observations (lags). This paper uses a new algorithm based in swarm of particles to feature selection on time series, the algorithm used was Frankenstein's Particle Swarm Optimization (FPSO). Many forms of filters and wrappers were proposed to feature selection, but these approaches have their limitations in relation to properties of the data set, such as size and whether they are linear or not. Optimization algorithms, such as FPSO, make no assumption about the data and converge faster. Hence, the FPSO may to find a good set of lags for time series forecasting and produce most accurate forecastings. Two prediction models were used: Multilayer Perceptron neural network (MLP) and Support Vector Regression (SVR). The results show that the approach improved previous results and that the forecasting using SVR produced best results, moreover its showed that the feature selection with FPSO was better than the features selection with original Particle Swarm Optimization.
doi_str_mv 10.1109/IJCNN.2011.6033535
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6033535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6033535</ieee_id><sourcerecordid>6033535</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-f77a583093b43c31b162504572af5c65f35e6228e2968655d107dde7cd6107ec3</originalsourceid><addsrcrecordid>eNo1UMlOwzAQNZtEW_oDcPEPpNgeL_ERRSyFqEWi98p1JpVR0lZ2EIKvJxHtZea9ecthCLnlbMY5s_fz12KxmAnG-UwzAAXqjEytybkUUloNWp2TkeCaZ1Iyc0HGJ0GZy5MAFq7JOKVPxgRYCyPyVrotTdig78J-R-t9pF1osT_FgGng6F3qwm5Lv9Iw313sgm-Qfny72NLlobeHXzekb8hV7ZqE0-OekNXT46p4ycrl87x4KLNgWZfVxjiVA7OwkeCBb7gWikllhKuV16oGhVqIHIXVuVaq4sxUFRpf6R6hhwm5-68NiLg-xNC6-LM-_gT-AEPoUQs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Lag selection for time series forecasting using Particle Swarm Optimization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ribeiro, G. H. T. ; de M Neto, P. S. G. ; Cavalcanti, G. D. C. ; Ing Ren Tsang</creator><creatorcontrib>Ribeiro, G. H. T. ; de M Neto, P. S. G. ; Cavalcanti, G. D. C. ; Ing Ren Tsang</creatorcontrib><description>The time series forecasting is an useful application for many areas of knowledge such as biology, economics, climatology, biology, among others. A very important step for time series prediction is the correct selection of the past observations (lags). This paper uses a new algorithm based in swarm of particles to feature selection on time series, the algorithm used was Frankenstein's Particle Swarm Optimization (FPSO). Many forms of filters and wrappers were proposed to feature selection, but these approaches have their limitations in relation to properties of the data set, such as size and whether they are linear or not. Optimization algorithms, such as FPSO, make no assumption about the data and converge faster. Hence, the FPSO may to find a good set of lags for time series forecasting and produce most accurate forecastings. Two prediction models were used: Multilayer Perceptron neural network (MLP) and Support Vector Regression (SVR). The results show that the approach improved previous results and that the forecasting using SVR produced best results, moreover its showed that the feature selection with FPSO was better than the features selection with original Particle Swarm Optimization.</description><identifier>ISSN: 2161-4393</identifier><identifier>ISBN: 1424496357</identifier><identifier>ISBN: 9781424496358</identifier><identifier>EISSN: 2161-4407</identifier><identifier>EISBN: 9781424496365</identifier><identifier>EISBN: 1424496365</identifier><identifier>EISBN: 9781424496372</identifier><identifier>EISBN: 1424496373</identifier><identifier>DOI: 10.1109/IJCNN.2011.6033535</identifier><language>eng</language><publisher>IEEE</publisher><subject>Equations ; Forecasting ; Kernel ; Predictive models ; Support vector machines ; Time series analysis ; Training</subject><ispartof>The 2011 International Joint Conference on Neural Networks, 2011, p.2437-2444</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6033535$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6033535$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ribeiro, G. H. T.</creatorcontrib><creatorcontrib>de M Neto, P. S. G.</creatorcontrib><creatorcontrib>Cavalcanti, G. D. C.</creatorcontrib><creatorcontrib>Ing Ren Tsang</creatorcontrib><title>Lag selection for time series forecasting using Particle Swarm Optimization</title><title>The 2011 International Joint Conference on Neural Networks</title><addtitle>IJCNN</addtitle><description>The time series forecasting is an useful application for many areas of knowledge such as biology, economics, climatology, biology, among others. A very important step for time series prediction is the correct selection of the past observations (lags). This paper uses a new algorithm based in swarm of particles to feature selection on time series, the algorithm used was Frankenstein's Particle Swarm Optimization (FPSO). Many forms of filters and wrappers were proposed to feature selection, but these approaches have their limitations in relation to properties of the data set, such as size and whether they are linear or not. Optimization algorithms, such as FPSO, make no assumption about the data and converge faster. Hence, the FPSO may to find a good set of lags for time series forecasting and produce most accurate forecastings. Two prediction models were used: Multilayer Perceptron neural network (MLP) and Support Vector Regression (SVR). The results show that the approach improved previous results and that the forecasting using SVR produced best results, moreover its showed that the feature selection with FPSO was better than the features selection with original Particle Swarm Optimization.</description><subject>Equations</subject><subject>Forecasting</subject><subject>Kernel</subject><subject>Predictive models</subject><subject>Support vector machines</subject><subject>Time series analysis</subject><subject>Training</subject><issn>2161-4393</issn><issn>2161-4407</issn><isbn>1424496357</isbn><isbn>9781424496358</isbn><isbn>9781424496365</isbn><isbn>1424496365</isbn><isbn>9781424496372</isbn><isbn>1424496373</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1UMlOwzAQNZtEW_oDcPEPpNgeL_ERRSyFqEWi98p1JpVR0lZ2EIKvJxHtZea9ecthCLnlbMY5s_fz12KxmAnG-UwzAAXqjEytybkUUloNWp2TkeCaZ1Iyc0HGJ0GZy5MAFq7JOKVPxgRYCyPyVrotTdig78J-R-t9pF1osT_FgGng6F3qwm5Lv9Iw313sgm-Qfny72NLlobeHXzekb8hV7ZqE0-OekNXT46p4ycrl87x4KLNgWZfVxjiVA7OwkeCBb7gWikllhKuV16oGhVqIHIXVuVaq4sxUFRpf6R6hhwm5-68NiLg-xNC6-LM-_gT-AEPoUQs</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Ribeiro, G. H. T.</creator><creator>de M Neto, P. S. G.</creator><creator>Cavalcanti, G. D. C.</creator><creator>Ing Ren Tsang</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201107</creationdate><title>Lag selection for time series forecasting using Particle Swarm Optimization</title><author>Ribeiro, G. H. T. ; de M Neto, P. S. G. ; Cavalcanti, G. D. C. ; Ing Ren Tsang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-f77a583093b43c31b162504572af5c65f35e6228e2968655d107dde7cd6107ec3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Equations</topic><topic>Forecasting</topic><topic>Kernel</topic><topic>Predictive models</topic><topic>Support vector machines</topic><topic>Time series analysis</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Ribeiro, G. H. T.</creatorcontrib><creatorcontrib>de M Neto, P. S. G.</creatorcontrib><creatorcontrib>Cavalcanti, G. D. C.</creatorcontrib><creatorcontrib>Ing Ren Tsang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ribeiro, G. H. T.</au><au>de M Neto, P. S. G.</au><au>Cavalcanti, G. D. C.</au><au>Ing Ren Tsang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Lag selection for time series forecasting using Particle Swarm Optimization</atitle><btitle>The 2011 International Joint Conference on Neural Networks</btitle><stitle>IJCNN</stitle><date>2011-07</date><risdate>2011</risdate><spage>2437</spage><epage>2444</epage><pages>2437-2444</pages><issn>2161-4393</issn><eissn>2161-4407</eissn><isbn>1424496357</isbn><isbn>9781424496358</isbn><eisbn>9781424496365</eisbn><eisbn>1424496365</eisbn><eisbn>9781424496372</eisbn><eisbn>1424496373</eisbn><abstract>The time series forecasting is an useful application for many areas of knowledge such as biology, economics, climatology, biology, among others. A very important step for time series prediction is the correct selection of the past observations (lags). This paper uses a new algorithm based in swarm of particles to feature selection on time series, the algorithm used was Frankenstein's Particle Swarm Optimization (FPSO). Many forms of filters and wrappers were proposed to feature selection, but these approaches have their limitations in relation to properties of the data set, such as size and whether they are linear or not. Optimization algorithms, such as FPSO, make no assumption about the data and converge faster. Hence, the FPSO may to find a good set of lags for time series forecasting and produce most accurate forecastings. Two prediction models were used: Multilayer Perceptron neural network (MLP) and Support Vector Regression (SVR). The results show that the approach improved previous results and that the forecasting using SVR produced best results, moreover its showed that the feature selection with FPSO was better than the features selection with original Particle Swarm Optimization.</abstract><pub>IEEE</pub><doi>10.1109/IJCNN.2011.6033535</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2161-4393
ispartof The 2011 International Joint Conference on Neural Networks, 2011, p.2437-2444
issn 2161-4393
2161-4407
language eng
recordid cdi_ieee_primary_6033535
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Equations
Forecasting
Kernel
Predictive models
Support vector machines
Time series analysis
Training
title Lag selection for time series forecasting using Particle Swarm Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A11%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Lag%20selection%20for%20time%20series%20forecasting%20using%20Particle%20Swarm%20Optimization&rft.btitle=The%202011%20International%20Joint%20Conference%20on%20Neural%20Networks&rft.au=Ribeiro,%20G.%20H.%20T.&rft.date=2011-07&rft.spage=2437&rft.epage=2444&rft.pages=2437-2444&rft.issn=2161-4393&rft.eissn=2161-4407&rft.isbn=1424496357&rft.isbn_list=9781424496358&rft_id=info:doi/10.1109/IJCNN.2011.6033535&rft_dat=%3Cieee_6IE%3E6033535%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424496365&rft.eisbn_list=1424496365&rft.eisbn_list=9781424496372&rft.eisbn_list=1424496373&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6033535&rfr_iscdi=true