QUonG: A GPU-based HPC System Dedicated to LQCD Computing
QUonG is an INFN (Istituto Nazionale di Fisica Nucleare) initiative targeted to develop a high performance computing system dedicated to Lattice QCD computations. QUonG is a massively parallel computing platform that lever ages on commodity multi-core processors coupled with last generation GPUs. It...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | QUonG is an INFN (Istituto Nazionale di Fisica Nucleare) initiative targeted to develop a high performance computing system dedicated to Lattice QCD computations. QUonG is a massively parallel computing platform that lever ages on commodity multi-core processors coupled with last generation GPUs. Its network mesh exploits the characteristics of LQCD algorithm for the design of a point-to-point, high performance, low latency 3-d torus network to interconnect the computing nodes. The network is built upon the APEnet+ project: it consists of an FPGA-based PCI Express board exposing six full bidirectional off-board links running at 34 Gbps each, and implementing RDMA protocol and an experimental direct network-to-GPU interface, enabling significant access latency reduction for inter-node data transfers. The final shape of a complete QUonG deployment is an assembly of standard 42U racks, each one capable of 60 TFlops/rack of peak performance, at a cost of 5 K€/TFlops and for an estimated power consumption of 25 KW/rack. A first QUonG system prototype is expected to be delivered at the end of the year 2011. |
---|---|
ISSN: | 2166-5133 2166-515X |
DOI: | 10.1109/SAAHPC.2011.15 |