A wind power forecasting method with confidence interval

This paper presents a wind power forecasting method with confidence interval. Wind speed forecasts are calculated by regression models using GPV (Grid Point Vale) weather forecasts. The forecasts are adjusted by fuzzy inference using the latest error. The wind power forecasts are translated from the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Iizaka, T., Jintsugawa, T., Kondo, H., Nakanishi, Y., Fukuyama, Y., Mori, H.
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Iizaka, T.
Jintsugawa, T.
Kondo, H.
Nakanishi, Y.
Fukuyama, Y.
Mori, H.
description This paper presents a wind power forecasting method with confidence interval. Wind speed forecasts are calculated by regression models using GPV (Grid Point Vale) weather forecasts. The forecasts are adjusted by fuzzy inference using the latest error. The wind power forecasts are translated from the wind speed forecasts using two power-curves. They are combined by fuzzy inference depending on wind direction. The error confidence interval models are generated for each forecasting target time. Each confidence interval is combined by another fuzzy inference. The proposed method has been applied to actual power generators, and found that forecasting errors are better than the conventional methods. The results show the effectiveness of the proposed method.
doi_str_mv 10.1109/MWSCAS.2011.6026398
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6026398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6026398</ieee_id><sourcerecordid>6026398</sourcerecordid><originalsourceid>FETCH-LOGICAL-i220t-6c6eda95f68a9166667b6f06bbb1fbc3130104ad7fe0aee4b625209cbbbf98d53</originalsourceid><addsrcrecordid>eNo10MlOwzAYBGCzSbSlT9CLXyDBvx1vx6hik4o4FMSx8vKbGrVJlURUvD1BlLnM4ZPmMIQsgJUAzN4-v6-X9brkDKBUjCthzRmZggJuKiO1PCcTkNIUwlh7QeZWm39T4vLXqtF0pa7JtO8_GeNCg50QU9NjbiI9tEfsaGo7DK4fcvNB9zhs2zjqsKWhbVKO2ASkuRmw-3K7G3KV3K7H-aln5O3-7nX5WKxeHp6W9arInLOhUEFhdFYmZZwFNUZ7lZjy3kPyQYBgwCoXdULmECuvuOTMhtGTNVGKGVn87WZE3By6vHfd9-b0gPgBjfxMHg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A wind power forecasting method with confidence interval</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Iizaka, T. ; Jintsugawa, T. ; Kondo, H. ; Nakanishi, Y. ; Fukuyama, Y. ; Mori, H.</creator><creatorcontrib>Iizaka, T. ; Jintsugawa, T. ; Kondo, H. ; Nakanishi, Y. ; Fukuyama, Y. ; Mori, H.</creatorcontrib><description>This paper presents a wind power forecasting method with confidence interval. Wind speed forecasts are calculated by regression models using GPV (Grid Point Vale) weather forecasts. The forecasts are adjusted by fuzzy inference using the latest error. The wind power forecasts are translated from the wind speed forecasts using two power-curves. They are combined by fuzzy inference depending on wind direction. The error confidence interval models are generated for each forecasting target time. Each confidence interval is combined by another fuzzy inference. The proposed method has been applied to actual power generators, and found that forecasting errors are better than the conventional methods. The results show the effectiveness of the proposed method.</description><identifier>ISSN: 1548-3746</identifier><identifier>ISBN: 9781612848563</identifier><identifier>ISBN: 1612848567</identifier><identifier>EISSN: 1558-3899</identifier><identifier>EISBN: 1612848575</identifier><identifier>EISBN: 9781612848570</identifier><identifier>EISBN: 9781612848556</identifier><identifier>EISBN: 1612848559</identifier><identifier>DOI: 10.1109/MWSCAS.2011.6026398</identifier><language>eng</language><publisher>IEEE</publisher><ispartof>2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS), 2011, p.1-4</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6026398$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6026398$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Iizaka, T.</creatorcontrib><creatorcontrib>Jintsugawa, T.</creatorcontrib><creatorcontrib>Kondo, H.</creatorcontrib><creatorcontrib>Nakanishi, Y.</creatorcontrib><creatorcontrib>Fukuyama, Y.</creatorcontrib><creatorcontrib>Mori, H.</creatorcontrib><title>A wind power forecasting method with confidence interval</title><title>2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS)</title><addtitle>MWSCAS</addtitle><description>This paper presents a wind power forecasting method with confidence interval. Wind speed forecasts are calculated by regression models using GPV (Grid Point Vale) weather forecasts. The forecasts are adjusted by fuzzy inference using the latest error. The wind power forecasts are translated from the wind speed forecasts using two power-curves. They are combined by fuzzy inference depending on wind direction. The error confidence interval models are generated for each forecasting target time. Each confidence interval is combined by another fuzzy inference. The proposed method has been applied to actual power generators, and found that forecasting errors are better than the conventional methods. The results show the effectiveness of the proposed method.</description><issn>1548-3746</issn><issn>1558-3899</issn><isbn>9781612848563</isbn><isbn>1612848567</isbn><isbn>1612848575</isbn><isbn>9781612848570</isbn><isbn>9781612848556</isbn><isbn>1612848559</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo10MlOwzAYBGCzSbSlT9CLXyDBvx1vx6hik4o4FMSx8vKbGrVJlURUvD1BlLnM4ZPmMIQsgJUAzN4-v6-X9brkDKBUjCthzRmZggJuKiO1PCcTkNIUwlh7QeZWm39T4vLXqtF0pa7JtO8_GeNCg50QU9NjbiI9tEfsaGo7DK4fcvNB9zhs2zjqsKWhbVKO2ASkuRmw-3K7G3KV3K7H-aln5O3-7nX5WKxeHp6W9arInLOhUEFhdFYmZZwFNUZ7lZjy3kPyQYBgwCoXdULmECuvuOTMhtGTNVGKGVn87WZE3By6vHfd9-b0gPgBjfxMHg</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Iizaka, T.</creator><creator>Jintsugawa, T.</creator><creator>Kondo, H.</creator><creator>Nakanishi, Y.</creator><creator>Fukuyama, Y.</creator><creator>Mori, H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20110101</creationdate><title>A wind power forecasting method with confidence interval</title><author>Iizaka, T. ; Jintsugawa, T. ; Kondo, H. ; Nakanishi, Y. ; Fukuyama, Y. ; Mori, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i220t-6c6eda95f68a9166667b6f06bbb1fbc3130104ad7fe0aee4b625209cbbbf98d53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Iizaka, T.</creatorcontrib><creatorcontrib>Jintsugawa, T.</creatorcontrib><creatorcontrib>Kondo, H.</creatorcontrib><creatorcontrib>Nakanishi, Y.</creatorcontrib><creatorcontrib>Fukuyama, Y.</creatorcontrib><creatorcontrib>Mori, H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Iizaka, T.</au><au>Jintsugawa, T.</au><au>Kondo, H.</au><au>Nakanishi, Y.</au><au>Fukuyama, Y.</au><au>Mori, H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A wind power forecasting method with confidence interval</atitle><btitle>2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS)</btitle><stitle>MWSCAS</stitle><date>2011-01-01</date><risdate>2011</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1548-3746</issn><eissn>1558-3899</eissn><isbn>9781612848563</isbn><isbn>1612848567</isbn><eisbn>1612848575</eisbn><eisbn>9781612848570</eisbn><eisbn>9781612848556</eisbn><eisbn>1612848559</eisbn><abstract>This paper presents a wind power forecasting method with confidence interval. Wind speed forecasts are calculated by regression models using GPV (Grid Point Vale) weather forecasts. The forecasts are adjusted by fuzzy inference using the latest error. The wind power forecasts are translated from the wind speed forecasts using two power-curves. They are combined by fuzzy inference depending on wind direction. The error confidence interval models are generated for each forecasting target time. Each confidence interval is combined by another fuzzy inference. The proposed method has been applied to actual power generators, and found that forecasting errors are better than the conventional methods. The results show the effectiveness of the proposed method.</abstract><pub>IEEE</pub><doi>10.1109/MWSCAS.2011.6026398</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1548-3746
ispartof 2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS), 2011, p.1-4
issn 1548-3746
1558-3899
language eng
recordid cdi_ieee_primary_6026398
source IEEE Electronic Library (IEL) Conference Proceedings
title A wind power forecasting method with confidence interval
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A59%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20wind%20power%20forecasting%20method%20with%20confidence%20interval&rft.btitle=2011%20IEEE%2054th%20International%20Midwest%20Symposium%20on%20Circuits%20and%20Systems%20(MWSCAS)&rft.au=Iizaka,%20T.&rft.date=2011-01-01&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1548-3746&rft.eissn=1558-3899&rft.isbn=9781612848563&rft.isbn_list=1612848567&rft_id=info:doi/10.1109/MWSCAS.2011.6026398&rft_dat=%3Cieee_6IE%3E6026398%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1612848575&rft.eisbn_list=9781612848570&rft.eisbn_list=9781612848556&rft.eisbn_list=1612848559&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6026398&rfr_iscdi=true