A wind power forecasting method with confidence interval
This paper presents a wind power forecasting method with confidence interval. Wind speed forecasts are calculated by regression models using GPV (Grid Point Vale) weather forecasts. The forecasts are adjusted by fuzzy inference using the latest error. The wind power forecasts are translated from the...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Iizaka, T. Jintsugawa, T. Kondo, H. Nakanishi, Y. Fukuyama, Y. Mori, H. |
description | This paper presents a wind power forecasting method with confidence interval. Wind speed forecasts are calculated by regression models using GPV (Grid Point Vale) weather forecasts. The forecasts are adjusted by fuzzy inference using the latest error. The wind power forecasts are translated from the wind speed forecasts using two power-curves. They are combined by fuzzy inference depending on wind direction. The error confidence interval models are generated for each forecasting target time. Each confidence interval is combined by another fuzzy inference. The proposed method has been applied to actual power generators, and found that forecasting errors are better than the conventional methods. The results show the effectiveness of the proposed method. |
doi_str_mv | 10.1109/MWSCAS.2011.6026398 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6026398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6026398</ieee_id><sourcerecordid>6026398</sourcerecordid><originalsourceid>FETCH-LOGICAL-i220t-6c6eda95f68a9166667b6f06bbb1fbc3130104ad7fe0aee4b625209cbbbf98d53</originalsourceid><addsrcrecordid>eNo10MlOwzAYBGCzSbSlT9CLXyDBvx1vx6hik4o4FMSx8vKbGrVJlURUvD1BlLnM4ZPmMIQsgJUAzN4-v6-X9brkDKBUjCthzRmZggJuKiO1PCcTkNIUwlh7QeZWm39T4vLXqtF0pa7JtO8_GeNCg50QU9NjbiI9tEfsaGo7DK4fcvNB9zhs2zjqsKWhbVKO2ASkuRmw-3K7G3KV3K7H-aln5O3-7nX5WKxeHp6W9arInLOhUEFhdFYmZZwFNUZ7lZjy3kPyQYBgwCoXdULmECuvuOTMhtGTNVGKGVn87WZE3By6vHfd9-b0gPgBjfxMHg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A wind power forecasting method with confidence interval</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Iizaka, T. ; Jintsugawa, T. ; Kondo, H. ; Nakanishi, Y. ; Fukuyama, Y. ; Mori, H.</creator><creatorcontrib>Iizaka, T. ; Jintsugawa, T. ; Kondo, H. ; Nakanishi, Y. ; Fukuyama, Y. ; Mori, H.</creatorcontrib><description>This paper presents a wind power forecasting method with confidence interval. Wind speed forecasts are calculated by regression models using GPV (Grid Point Vale) weather forecasts. The forecasts are adjusted by fuzzy inference using the latest error. The wind power forecasts are translated from the wind speed forecasts using two power-curves. They are combined by fuzzy inference depending on wind direction. The error confidence interval models are generated for each forecasting target time. Each confidence interval is combined by another fuzzy inference. The proposed method has been applied to actual power generators, and found that forecasting errors are better than the conventional methods. The results show the effectiveness of the proposed method.</description><identifier>ISSN: 1548-3746</identifier><identifier>ISBN: 9781612848563</identifier><identifier>ISBN: 1612848567</identifier><identifier>EISSN: 1558-3899</identifier><identifier>EISBN: 1612848575</identifier><identifier>EISBN: 9781612848570</identifier><identifier>EISBN: 9781612848556</identifier><identifier>EISBN: 1612848559</identifier><identifier>DOI: 10.1109/MWSCAS.2011.6026398</identifier><language>eng</language><publisher>IEEE</publisher><ispartof>2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS), 2011, p.1-4</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6026398$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6026398$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Iizaka, T.</creatorcontrib><creatorcontrib>Jintsugawa, T.</creatorcontrib><creatorcontrib>Kondo, H.</creatorcontrib><creatorcontrib>Nakanishi, Y.</creatorcontrib><creatorcontrib>Fukuyama, Y.</creatorcontrib><creatorcontrib>Mori, H.</creatorcontrib><title>A wind power forecasting method with confidence interval</title><title>2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS)</title><addtitle>MWSCAS</addtitle><description>This paper presents a wind power forecasting method with confidence interval. Wind speed forecasts are calculated by regression models using GPV (Grid Point Vale) weather forecasts. The forecasts are adjusted by fuzzy inference using the latest error. The wind power forecasts are translated from the wind speed forecasts using two power-curves. They are combined by fuzzy inference depending on wind direction. The error confidence interval models are generated for each forecasting target time. Each confidence interval is combined by another fuzzy inference. The proposed method has been applied to actual power generators, and found that forecasting errors are better than the conventional methods. The results show the effectiveness of the proposed method.</description><issn>1548-3746</issn><issn>1558-3899</issn><isbn>9781612848563</isbn><isbn>1612848567</isbn><isbn>1612848575</isbn><isbn>9781612848570</isbn><isbn>9781612848556</isbn><isbn>1612848559</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo10MlOwzAYBGCzSbSlT9CLXyDBvx1vx6hik4o4FMSx8vKbGrVJlURUvD1BlLnM4ZPmMIQsgJUAzN4-v6-X9brkDKBUjCthzRmZggJuKiO1PCcTkNIUwlh7QeZWm39T4vLXqtF0pa7JtO8_GeNCg50QU9NjbiI9tEfsaGo7DK4fcvNB9zhs2zjqsKWhbVKO2ASkuRmw-3K7G3KV3K7H-aln5O3-7nX5WKxeHp6W9arInLOhUEFhdFYmZZwFNUZ7lZjy3kPyQYBgwCoXdULmECuvuOTMhtGTNVGKGVn87WZE3By6vHfd9-b0gPgBjfxMHg</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Iizaka, T.</creator><creator>Jintsugawa, T.</creator><creator>Kondo, H.</creator><creator>Nakanishi, Y.</creator><creator>Fukuyama, Y.</creator><creator>Mori, H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20110101</creationdate><title>A wind power forecasting method with confidence interval</title><author>Iizaka, T. ; Jintsugawa, T. ; Kondo, H. ; Nakanishi, Y. ; Fukuyama, Y. ; Mori, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i220t-6c6eda95f68a9166667b6f06bbb1fbc3130104ad7fe0aee4b625209cbbbf98d53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Iizaka, T.</creatorcontrib><creatorcontrib>Jintsugawa, T.</creatorcontrib><creatorcontrib>Kondo, H.</creatorcontrib><creatorcontrib>Nakanishi, Y.</creatorcontrib><creatorcontrib>Fukuyama, Y.</creatorcontrib><creatorcontrib>Mori, H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Iizaka, T.</au><au>Jintsugawa, T.</au><au>Kondo, H.</au><au>Nakanishi, Y.</au><au>Fukuyama, Y.</au><au>Mori, H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A wind power forecasting method with confidence interval</atitle><btitle>2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS)</btitle><stitle>MWSCAS</stitle><date>2011-01-01</date><risdate>2011</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1548-3746</issn><eissn>1558-3899</eissn><isbn>9781612848563</isbn><isbn>1612848567</isbn><eisbn>1612848575</eisbn><eisbn>9781612848570</eisbn><eisbn>9781612848556</eisbn><eisbn>1612848559</eisbn><abstract>This paper presents a wind power forecasting method with confidence interval. Wind speed forecasts are calculated by regression models using GPV (Grid Point Vale) weather forecasts. The forecasts are adjusted by fuzzy inference using the latest error. The wind power forecasts are translated from the wind speed forecasts using two power-curves. They are combined by fuzzy inference depending on wind direction. The error confidence interval models are generated for each forecasting target time. Each confidence interval is combined by another fuzzy inference. The proposed method has been applied to actual power generators, and found that forecasting errors are better than the conventional methods. The results show the effectiveness of the proposed method.</abstract><pub>IEEE</pub><doi>10.1109/MWSCAS.2011.6026398</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1548-3746 |
ispartof | 2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS), 2011, p.1-4 |
issn | 1548-3746 1558-3899 |
language | eng |
recordid | cdi_ieee_primary_6026398 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
title | A wind power forecasting method with confidence interval |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A59%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20wind%20power%20forecasting%20method%20with%20confidence%20interval&rft.btitle=2011%20IEEE%2054th%20International%20Midwest%20Symposium%20on%20Circuits%20and%20Systems%20(MWSCAS)&rft.au=Iizaka,%20T.&rft.date=2011-01-01&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1548-3746&rft.eissn=1558-3899&rft.isbn=9781612848563&rft.isbn_list=1612848567&rft_id=info:doi/10.1109/MWSCAS.2011.6026398&rft_dat=%3Cieee_6IE%3E6026398%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1612848575&rft.eisbn_list=9781612848570&rft.eisbn_list=9781612848556&rft.eisbn_list=1612848559&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6026398&rfr_iscdi=true |