From maxi-min margin machine classification to regression

The maxi-min margin machine (M 4 ) algorithm, contrast to the traditional support vector machine (SVM) algorithm, gives a more robust solution and gets better generalization performance. In this paper we extend the M 4 classification algorithm to deal with regression problem, and propose a novel reg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xiaoming Wang, Xiangnian Huang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2300
container_issue
container_start_page 2297
container_title
container_volume
creator Xiaoming Wang
Xiangnian Huang
description The maxi-min margin machine (M 4 ) algorithm, contrast to the traditional support vector machine (SVM) algorithm, gives a more robust solution and gets better generalization performance. In this paper we extend the M 4 classification algorithm to deal with regression problem, and propose a novel regression method. This method inherits the characteristics of M 4 such as good robustness and generalization performance. In this paper we discuss the linear and nonlinear case of the proposed method, and experimental results indicate its effectiveness and better robustness and generalization performance compared with the traditional SVR algorithm.
doi_str_mv 10.1109/MEC.2011.6025952
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6025952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6025952</ieee_id><sourcerecordid>6025952</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-46a42ba597f89fcd1732e3ec307c80cbe8bec8596fbbacce9d2c10a1bbace89c3</originalsourceid><addsrcrecordid>eNo9Tz1PwzAUNEJIQOmOxJI_kOBnJ47fiKIWkIpYulf263MxahJkZ4B_T4CKW-5jON0JcQuyApB4_7LqKiUBKiNVg406E9dgQNm6VWDP_w2guRTLnN_lDGMQAa8ErtPYF737jGUfh1mkwy_RWxy4oKPLOYZIborjUExjkfiQeM7G4UZcBHfMvDzxQmzXq233VG5eH5-7h00ZUU5lbVytvGuwDRYD7aHVijWTli1ZSZ6tZ7INmuC9I2LcKwLp4MexRdILcfdXG5l595HiPPFrd3qqvwGW4Uh-</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>From maxi-min margin machine classification to regression</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xiaoming Wang ; Xiangnian Huang</creator><creatorcontrib>Xiaoming Wang ; Xiangnian Huang</creatorcontrib><description>The maxi-min margin machine (M 4 ) algorithm, contrast to the traditional support vector machine (SVM) algorithm, gives a more robust solution and gets better generalization performance. In this paper we extend the M 4 classification algorithm to deal with regression problem, and propose a novel regression method. This method inherits the characteristics of M 4 such as good robustness and generalization performance. In this paper we discuss the linear and nonlinear case of the proposed method, and experimental results indicate its effectiveness and better robustness and generalization performance compared with the traditional SVR algorithm.</description><identifier>ISBN: 1612847196</identifier><identifier>ISBN: 9781612847191</identifier><identifier>EISBN: 1612847218</identifier><identifier>EISBN: 9781612847214</identifier><identifier>EISBN: 1612847226</identifier><identifier>EISBN: 9781612847221</identifier><identifier>DOI: 10.1109/MEC.2011.6025952</identifier><language>eng</language><publisher>IEEE</publisher><subject>Classification algorithms ; Educational institutions ; Kernel ; kernel method ; maxi-min margin machine ; Optimization ; Robustness ; Support vector machines ; support vector regression ; Training</subject><ispartof>2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC), 2011, p.2297-2300</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6025952$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6025952$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiaoming Wang</creatorcontrib><creatorcontrib>Xiangnian Huang</creatorcontrib><title>From maxi-min margin machine classification to regression</title><title>2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC)</title><addtitle>MEC</addtitle><description>The maxi-min margin machine (M 4 ) algorithm, contrast to the traditional support vector machine (SVM) algorithm, gives a more robust solution and gets better generalization performance. In this paper we extend the M 4 classification algorithm to deal with regression problem, and propose a novel regression method. This method inherits the characteristics of M 4 such as good robustness and generalization performance. In this paper we discuss the linear and nonlinear case of the proposed method, and experimental results indicate its effectiveness and better robustness and generalization performance compared with the traditional SVR algorithm.</description><subject>Classification algorithms</subject><subject>Educational institutions</subject><subject>Kernel</subject><subject>kernel method</subject><subject>maxi-min margin machine</subject><subject>Optimization</subject><subject>Robustness</subject><subject>Support vector machines</subject><subject>support vector regression</subject><subject>Training</subject><isbn>1612847196</isbn><isbn>9781612847191</isbn><isbn>1612847218</isbn><isbn>9781612847214</isbn><isbn>1612847226</isbn><isbn>9781612847221</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9Tz1PwzAUNEJIQOmOxJI_kOBnJ47fiKIWkIpYulf263MxahJkZ4B_T4CKW-5jON0JcQuyApB4_7LqKiUBKiNVg406E9dgQNm6VWDP_w2guRTLnN_lDGMQAa8ErtPYF737jGUfh1mkwy_RWxy4oKPLOYZIborjUExjkfiQeM7G4UZcBHfMvDzxQmzXq233VG5eH5-7h00ZUU5lbVytvGuwDRYD7aHVijWTli1ZSZ6tZ7INmuC9I2LcKwLp4MexRdILcfdXG5l595HiPPFrd3qqvwGW4Uh-</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>Xiaoming Wang</creator><creator>Xiangnian Huang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201108</creationdate><title>From maxi-min margin machine classification to regression</title><author>Xiaoming Wang ; Xiangnian Huang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-46a42ba597f89fcd1732e3ec307c80cbe8bec8596fbbacce9d2c10a1bbace89c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Classification algorithms</topic><topic>Educational institutions</topic><topic>Kernel</topic><topic>kernel method</topic><topic>maxi-min margin machine</topic><topic>Optimization</topic><topic>Robustness</topic><topic>Support vector machines</topic><topic>support vector regression</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiaoming Wang</creatorcontrib><creatorcontrib>Xiangnian Huang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiaoming Wang</au><au>Xiangnian Huang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>From maxi-min margin machine classification to regression</atitle><btitle>2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC)</btitle><stitle>MEC</stitle><date>2011-08</date><risdate>2011</risdate><spage>2297</spage><epage>2300</epage><pages>2297-2300</pages><isbn>1612847196</isbn><isbn>9781612847191</isbn><eisbn>1612847218</eisbn><eisbn>9781612847214</eisbn><eisbn>1612847226</eisbn><eisbn>9781612847221</eisbn><abstract>The maxi-min margin machine (M 4 ) algorithm, contrast to the traditional support vector machine (SVM) algorithm, gives a more robust solution and gets better generalization performance. In this paper we extend the M 4 classification algorithm to deal with regression problem, and propose a novel regression method. This method inherits the characteristics of M 4 such as good robustness and generalization performance. In this paper we discuss the linear and nonlinear case of the proposed method, and experimental results indicate its effectiveness and better robustness and generalization performance compared with the traditional SVR algorithm.</abstract><pub>IEEE</pub><doi>10.1109/MEC.2011.6025952</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1612847196
ispartof 2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC), 2011, p.2297-2300
issn
language eng
recordid cdi_ieee_primary_6025952
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Classification algorithms
Educational institutions
Kernel
kernel method
maxi-min margin machine
Optimization
Robustness
Support vector machines
support vector regression
Training
title From maxi-min margin machine classification to regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A21%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=From%20maxi-min%20margin%20machine%20classification%20to%20regression&rft.btitle=2011%20International%20Conference%20on%20Mechatronic%20Science,%20Electric%20Engineering%20and%20Computer%20(MEC)&rft.au=Xiaoming%20Wang&rft.date=2011-08&rft.spage=2297&rft.epage=2300&rft.pages=2297-2300&rft.isbn=1612847196&rft.isbn_list=9781612847191&rft_id=info:doi/10.1109/MEC.2011.6025952&rft_dat=%3Cieee_6IE%3E6025952%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1612847218&rft.eisbn_list=9781612847214&rft.eisbn_list=1612847226&rft.eisbn_list=9781612847221&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6025952&rfr_iscdi=true