From maxi-min margin machine classification to regression
The maxi-min margin machine (M 4 ) algorithm, contrast to the traditional support vector machine (SVM) algorithm, gives a more robust solution and gets better generalization performance. In this paper we extend the M 4 classification algorithm to deal with regression problem, and propose a novel reg...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2300 |
---|---|
container_issue | |
container_start_page | 2297 |
container_title | |
container_volume | |
creator | Xiaoming Wang Xiangnian Huang |
description | The maxi-min margin machine (M 4 ) algorithm, contrast to the traditional support vector machine (SVM) algorithm, gives a more robust solution and gets better generalization performance. In this paper we extend the M 4 classification algorithm to deal with regression problem, and propose a novel regression method. This method inherits the characteristics of M 4 such as good robustness and generalization performance. In this paper we discuss the linear and nonlinear case of the proposed method, and experimental results indicate its effectiveness and better robustness and generalization performance compared with the traditional SVR algorithm. |
doi_str_mv | 10.1109/MEC.2011.6025952 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6025952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6025952</ieee_id><sourcerecordid>6025952</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-46a42ba597f89fcd1732e3ec307c80cbe8bec8596fbbacce9d2c10a1bbace89c3</originalsourceid><addsrcrecordid>eNo9Tz1PwzAUNEJIQOmOxJI_kOBnJ47fiKIWkIpYulf263MxahJkZ4B_T4CKW-5jON0JcQuyApB4_7LqKiUBKiNVg406E9dgQNm6VWDP_w2guRTLnN_lDGMQAa8ErtPYF737jGUfh1mkwy_RWxy4oKPLOYZIborjUExjkfiQeM7G4UZcBHfMvDzxQmzXq233VG5eH5-7h00ZUU5lbVytvGuwDRYD7aHVijWTli1ZSZ6tZ7INmuC9I2LcKwLp4MexRdILcfdXG5l595HiPPFrd3qqvwGW4Uh-</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>From maxi-min margin machine classification to regression</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xiaoming Wang ; Xiangnian Huang</creator><creatorcontrib>Xiaoming Wang ; Xiangnian Huang</creatorcontrib><description>The maxi-min margin machine (M 4 ) algorithm, contrast to the traditional support vector machine (SVM) algorithm, gives a more robust solution and gets better generalization performance. In this paper we extend the M 4 classification algorithm to deal with regression problem, and propose a novel regression method. This method inherits the characteristics of M 4 such as good robustness and generalization performance. In this paper we discuss the linear and nonlinear case of the proposed method, and experimental results indicate its effectiveness and better robustness and generalization performance compared with the traditional SVR algorithm.</description><identifier>ISBN: 1612847196</identifier><identifier>ISBN: 9781612847191</identifier><identifier>EISBN: 1612847218</identifier><identifier>EISBN: 9781612847214</identifier><identifier>EISBN: 1612847226</identifier><identifier>EISBN: 9781612847221</identifier><identifier>DOI: 10.1109/MEC.2011.6025952</identifier><language>eng</language><publisher>IEEE</publisher><subject>Classification algorithms ; Educational institutions ; Kernel ; kernel method ; maxi-min margin machine ; Optimization ; Robustness ; Support vector machines ; support vector regression ; Training</subject><ispartof>2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC), 2011, p.2297-2300</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6025952$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6025952$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiaoming Wang</creatorcontrib><creatorcontrib>Xiangnian Huang</creatorcontrib><title>From maxi-min margin machine classification to regression</title><title>2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC)</title><addtitle>MEC</addtitle><description>The maxi-min margin machine (M 4 ) algorithm, contrast to the traditional support vector machine (SVM) algorithm, gives a more robust solution and gets better generalization performance. In this paper we extend the M 4 classification algorithm to deal with regression problem, and propose a novel regression method. This method inherits the characteristics of M 4 such as good robustness and generalization performance. In this paper we discuss the linear and nonlinear case of the proposed method, and experimental results indicate its effectiveness and better robustness and generalization performance compared with the traditional SVR algorithm.</description><subject>Classification algorithms</subject><subject>Educational institutions</subject><subject>Kernel</subject><subject>kernel method</subject><subject>maxi-min margin machine</subject><subject>Optimization</subject><subject>Robustness</subject><subject>Support vector machines</subject><subject>support vector regression</subject><subject>Training</subject><isbn>1612847196</isbn><isbn>9781612847191</isbn><isbn>1612847218</isbn><isbn>9781612847214</isbn><isbn>1612847226</isbn><isbn>9781612847221</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9Tz1PwzAUNEJIQOmOxJI_kOBnJ47fiKIWkIpYulf263MxahJkZ4B_T4CKW-5jON0JcQuyApB4_7LqKiUBKiNVg406E9dgQNm6VWDP_w2guRTLnN_lDGMQAa8ErtPYF737jGUfh1mkwy_RWxy4oKPLOYZIborjUExjkfiQeM7G4UZcBHfMvDzxQmzXq233VG5eH5-7h00ZUU5lbVytvGuwDRYD7aHVijWTli1ZSZ6tZ7INmuC9I2LcKwLp4MexRdILcfdXG5l595HiPPFrd3qqvwGW4Uh-</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>Xiaoming Wang</creator><creator>Xiangnian Huang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201108</creationdate><title>From maxi-min margin machine classification to regression</title><author>Xiaoming Wang ; Xiangnian Huang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-46a42ba597f89fcd1732e3ec307c80cbe8bec8596fbbacce9d2c10a1bbace89c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Classification algorithms</topic><topic>Educational institutions</topic><topic>Kernel</topic><topic>kernel method</topic><topic>maxi-min margin machine</topic><topic>Optimization</topic><topic>Robustness</topic><topic>Support vector machines</topic><topic>support vector regression</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiaoming Wang</creatorcontrib><creatorcontrib>Xiangnian Huang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiaoming Wang</au><au>Xiangnian Huang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>From maxi-min margin machine classification to regression</atitle><btitle>2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC)</btitle><stitle>MEC</stitle><date>2011-08</date><risdate>2011</risdate><spage>2297</spage><epage>2300</epage><pages>2297-2300</pages><isbn>1612847196</isbn><isbn>9781612847191</isbn><eisbn>1612847218</eisbn><eisbn>9781612847214</eisbn><eisbn>1612847226</eisbn><eisbn>9781612847221</eisbn><abstract>The maxi-min margin machine (M 4 ) algorithm, contrast to the traditional support vector machine (SVM) algorithm, gives a more robust solution and gets better generalization performance. In this paper we extend the M 4 classification algorithm to deal with regression problem, and propose a novel regression method. This method inherits the characteristics of M 4 such as good robustness and generalization performance. In this paper we discuss the linear and nonlinear case of the proposed method, and experimental results indicate its effectiveness and better robustness and generalization performance compared with the traditional SVR algorithm.</abstract><pub>IEEE</pub><doi>10.1109/MEC.2011.6025952</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1612847196 |
ispartof | 2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC), 2011, p.2297-2300 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6025952 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Classification algorithms Educational institutions Kernel kernel method maxi-min margin machine Optimization Robustness Support vector machines support vector regression Training |
title | From maxi-min margin machine classification to regression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A21%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=From%20maxi-min%20margin%20machine%20classification%20to%20regression&rft.btitle=2011%20International%20Conference%20on%20Mechatronic%20Science,%20Electric%20Engineering%20and%20Computer%20(MEC)&rft.au=Xiaoming%20Wang&rft.date=2011-08&rft.spage=2297&rft.epage=2300&rft.pages=2297-2300&rft.isbn=1612847196&rft.isbn_list=9781612847191&rft_id=info:doi/10.1109/MEC.2011.6025952&rft_dat=%3Cieee_6IE%3E6025952%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1612847218&rft.eisbn_list=9781612847214&rft.eisbn_list=1612847226&rft.eisbn_list=9781612847221&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6025952&rfr_iscdi=true |