Topic detection based on keyword

Topic Detection is a sub-task of Topic Detection and Tracking, its main task is to find and organize topics that system didn't know. By analyzing hundreds of website news reports, we find that usually there exist some keywords in text, and early study didn't pay enough attention to this, w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Liang Yue, Shibin Xiao, Xueqiang Lv, Tao Wang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 467
container_issue
container_start_page 464
container_title
container_volume
creator Liang Yue
Shibin Xiao
Xueqiang Lv
Tao Wang
description Topic Detection is a sub-task of Topic Detection and Tracking, its main task is to find and organize topics that system didn't know. By analyzing hundreds of website news reports, we find that usually there exist some keywords in text, and early study didn't pay enough attention to this, we propose a topic detection algorithm according this. The algorithm is based on K-means clustering algorithm, choose keywords and enhance the weight of keywords. Experiment proves it can improve the efficiency of system.
doi_str_mv 10.1109/MEC.2011.6025502
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6025502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6025502</ieee_id><sourcerecordid>6025502</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-179abc2739a8ec895f18d94cb7539d5f9393ab58382af7efbe2703728d43c4603</originalsourceid><addsrcrecordid>eNo9j0tLw0AUhaeIUK3dC27yBxLvnck87lJCfUDFTfZlHndgtDUlCUj_vQWLZ3O-s_ngCHGP0CACPb5vukYCYmNAag1yIW7RoHStleiu_geSWYr1NH3COcYQId2Iqh-OJVaJZ45zGb6r4CdO1Rm--PQzjOlOXGe_n3h96ZXonzd991pvP17euqdtXQjmGi35EKVV5B1HRzqjS9TGYLWipDMpUj5op5z02XIOLC0oK11qVWwNqJV4-NMWZt4dx3Lw42l3OaR-AUTGPNE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Topic detection based on keyword</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Liang Yue ; Shibin Xiao ; Xueqiang Lv ; Tao Wang</creator><creatorcontrib>Liang Yue ; Shibin Xiao ; Xueqiang Lv ; Tao Wang</creatorcontrib><description>Topic Detection is a sub-task of Topic Detection and Tracking, its main task is to find and organize topics that system didn't know. By analyzing hundreds of website news reports, we find that usually there exist some keywords in text, and early study didn't pay enough attention to this, we propose a topic detection algorithm according this. The algorithm is based on K-means clustering algorithm, choose keywords and enhance the weight of keywords. Experiment proves it can improve the efficiency of system.</description><identifier>ISBN: 1612847196</identifier><identifier>ISBN: 9781612847191</identifier><identifier>EISBN: 1612847218</identifier><identifier>EISBN: 9781612847214</identifier><identifier>EISBN: 1612847226</identifier><identifier>EISBN: 9781612847221</identifier><identifier>DOI: 10.1109/MEC.2011.6025502</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Clustering algorithms ; Detection algorithms ; Educational institutions ; Event detection ; Information processing ; Information science ; K-Means ; Keyword ; Topic detection</subject><ispartof>2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC), 2011, p.464-467</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6025502$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6025502$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liang Yue</creatorcontrib><creatorcontrib>Shibin Xiao</creatorcontrib><creatorcontrib>Xueqiang Lv</creatorcontrib><creatorcontrib>Tao Wang</creatorcontrib><title>Topic detection based on keyword</title><title>2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC)</title><addtitle>MEC</addtitle><description>Topic Detection is a sub-task of Topic Detection and Tracking, its main task is to find and organize topics that system didn't know. By analyzing hundreds of website news reports, we find that usually there exist some keywords in text, and early study didn't pay enough attention to this, we propose a topic detection algorithm according this. The algorithm is based on K-means clustering algorithm, choose keywords and enhance the weight of keywords. Experiment proves it can improve the efficiency of system.</description><subject>Algorithm design and analysis</subject><subject>Clustering algorithms</subject><subject>Detection algorithms</subject><subject>Educational institutions</subject><subject>Event detection</subject><subject>Information processing</subject><subject>Information science</subject><subject>K-Means</subject><subject>Keyword</subject><subject>Topic detection</subject><isbn>1612847196</isbn><isbn>9781612847191</isbn><isbn>1612847218</isbn><isbn>9781612847214</isbn><isbn>1612847226</isbn><isbn>9781612847221</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9j0tLw0AUhaeIUK3dC27yBxLvnck87lJCfUDFTfZlHndgtDUlCUj_vQWLZ3O-s_ngCHGP0CACPb5vukYCYmNAag1yIW7RoHStleiu_geSWYr1NH3COcYQId2Iqh-OJVaJZ45zGb6r4CdO1Rm--PQzjOlOXGe_n3h96ZXonzd991pvP17euqdtXQjmGi35EKVV5B1HRzqjS9TGYLWipDMpUj5op5z02XIOLC0oK11qVWwNqJV4-NMWZt4dx3Lw42l3OaR-AUTGPNE</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>Liang Yue</creator><creator>Shibin Xiao</creator><creator>Xueqiang Lv</creator><creator>Tao Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201108</creationdate><title>Topic detection based on keyword</title><author>Liang Yue ; Shibin Xiao ; Xueqiang Lv ; Tao Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-179abc2739a8ec895f18d94cb7539d5f9393ab58382af7efbe2703728d43c4603</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithm design and analysis</topic><topic>Clustering algorithms</topic><topic>Detection algorithms</topic><topic>Educational institutions</topic><topic>Event detection</topic><topic>Information processing</topic><topic>Information science</topic><topic>K-Means</topic><topic>Keyword</topic><topic>Topic detection</topic><toplevel>online_resources</toplevel><creatorcontrib>Liang Yue</creatorcontrib><creatorcontrib>Shibin Xiao</creatorcontrib><creatorcontrib>Xueqiang Lv</creatorcontrib><creatorcontrib>Tao Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liang Yue</au><au>Shibin Xiao</au><au>Xueqiang Lv</au><au>Tao Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Topic detection based on keyword</atitle><btitle>2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC)</btitle><stitle>MEC</stitle><date>2011-08</date><risdate>2011</risdate><spage>464</spage><epage>467</epage><pages>464-467</pages><isbn>1612847196</isbn><isbn>9781612847191</isbn><eisbn>1612847218</eisbn><eisbn>9781612847214</eisbn><eisbn>1612847226</eisbn><eisbn>9781612847221</eisbn><abstract>Topic Detection is a sub-task of Topic Detection and Tracking, its main task is to find and organize topics that system didn't know. By analyzing hundreds of website news reports, we find that usually there exist some keywords in text, and early study didn't pay enough attention to this, we propose a topic detection algorithm according this. The algorithm is based on K-means clustering algorithm, choose keywords and enhance the weight of keywords. Experiment proves it can improve the efficiency of system.</abstract><pub>IEEE</pub><doi>10.1109/MEC.2011.6025502</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1612847196
ispartof 2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC), 2011, p.464-467
issn
language eng
recordid cdi_ieee_primary_6025502
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Clustering algorithms
Detection algorithms
Educational institutions
Event detection
Information processing
Information science
K-Means
Keyword
Topic detection
title Topic detection based on keyword
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T12%3A24%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Topic%20detection%20based%20on%20keyword&rft.btitle=2011%20International%20Conference%20on%20Mechatronic%20Science,%20Electric%20Engineering%20and%20Computer%20(MEC)&rft.au=Liang%20Yue&rft.date=2011-08&rft.spage=464&rft.epage=467&rft.pages=464-467&rft.isbn=1612847196&rft.isbn_list=9781612847191&rft_id=info:doi/10.1109/MEC.2011.6025502&rft_dat=%3Cieee_6IE%3E6025502%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1612847218&rft.eisbn_list=9781612847214&rft.eisbn_list=1612847226&rft.eisbn_list=9781612847221&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6025502&rfr_iscdi=true