Topic detection based on keyword
Topic Detection is a sub-task of Topic Detection and Tracking, its main task is to find and organize topics that system didn't know. By analyzing hundreds of website news reports, we find that usually there exist some keywords in text, and early study didn't pay enough attention to this, w...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 467 |
---|---|
container_issue | |
container_start_page | 464 |
container_title | |
container_volume | |
creator | Liang Yue Shibin Xiao Xueqiang Lv Tao Wang |
description | Topic Detection is a sub-task of Topic Detection and Tracking, its main task is to find and organize topics that system didn't know. By analyzing hundreds of website news reports, we find that usually there exist some keywords in text, and early study didn't pay enough attention to this, we propose a topic detection algorithm according this. The algorithm is based on K-means clustering algorithm, choose keywords and enhance the weight of keywords. Experiment proves it can improve the efficiency of system. |
doi_str_mv | 10.1109/MEC.2011.6025502 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6025502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6025502</ieee_id><sourcerecordid>6025502</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-179abc2739a8ec895f18d94cb7539d5f9393ab58382af7efbe2703728d43c4603</originalsourceid><addsrcrecordid>eNo9j0tLw0AUhaeIUK3dC27yBxLvnck87lJCfUDFTfZlHndgtDUlCUj_vQWLZ3O-s_ngCHGP0CACPb5vukYCYmNAag1yIW7RoHStleiu_geSWYr1NH3COcYQId2Iqh-OJVaJZ45zGb6r4CdO1Rm--PQzjOlOXGe_n3h96ZXonzd991pvP17euqdtXQjmGi35EKVV5B1HRzqjS9TGYLWipDMpUj5op5z02XIOLC0oK11qVWwNqJV4-NMWZt4dx3Lw42l3OaR-AUTGPNE</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Topic detection based on keyword</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Liang Yue ; Shibin Xiao ; Xueqiang Lv ; Tao Wang</creator><creatorcontrib>Liang Yue ; Shibin Xiao ; Xueqiang Lv ; Tao Wang</creatorcontrib><description>Topic Detection is a sub-task of Topic Detection and Tracking, its main task is to find and organize topics that system didn't know. By analyzing hundreds of website news reports, we find that usually there exist some keywords in text, and early study didn't pay enough attention to this, we propose a topic detection algorithm according this. The algorithm is based on K-means clustering algorithm, choose keywords and enhance the weight of keywords. Experiment proves it can improve the efficiency of system.</description><identifier>ISBN: 1612847196</identifier><identifier>ISBN: 9781612847191</identifier><identifier>EISBN: 1612847218</identifier><identifier>EISBN: 9781612847214</identifier><identifier>EISBN: 1612847226</identifier><identifier>EISBN: 9781612847221</identifier><identifier>DOI: 10.1109/MEC.2011.6025502</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Clustering algorithms ; Detection algorithms ; Educational institutions ; Event detection ; Information processing ; Information science ; K-Means ; Keyword ; Topic detection</subject><ispartof>2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC), 2011, p.464-467</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6025502$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6025502$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liang Yue</creatorcontrib><creatorcontrib>Shibin Xiao</creatorcontrib><creatorcontrib>Xueqiang Lv</creatorcontrib><creatorcontrib>Tao Wang</creatorcontrib><title>Topic detection based on keyword</title><title>2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC)</title><addtitle>MEC</addtitle><description>Topic Detection is a sub-task of Topic Detection and Tracking, its main task is to find and organize topics that system didn't know. By analyzing hundreds of website news reports, we find that usually there exist some keywords in text, and early study didn't pay enough attention to this, we propose a topic detection algorithm according this. The algorithm is based on K-means clustering algorithm, choose keywords and enhance the weight of keywords. Experiment proves it can improve the efficiency of system.</description><subject>Algorithm design and analysis</subject><subject>Clustering algorithms</subject><subject>Detection algorithms</subject><subject>Educational institutions</subject><subject>Event detection</subject><subject>Information processing</subject><subject>Information science</subject><subject>K-Means</subject><subject>Keyword</subject><subject>Topic detection</subject><isbn>1612847196</isbn><isbn>9781612847191</isbn><isbn>1612847218</isbn><isbn>9781612847214</isbn><isbn>1612847226</isbn><isbn>9781612847221</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9j0tLw0AUhaeIUK3dC27yBxLvnck87lJCfUDFTfZlHndgtDUlCUj_vQWLZ3O-s_ngCHGP0CACPb5vukYCYmNAag1yIW7RoHStleiu_geSWYr1NH3COcYQId2Iqh-OJVaJZ45zGb6r4CdO1Rm--PQzjOlOXGe_n3h96ZXonzd991pvP17euqdtXQjmGi35EKVV5B1HRzqjS9TGYLWipDMpUj5op5z02XIOLC0oK11qVWwNqJV4-NMWZt4dx3Lw42l3OaR-AUTGPNE</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>Liang Yue</creator><creator>Shibin Xiao</creator><creator>Xueqiang Lv</creator><creator>Tao Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201108</creationdate><title>Topic detection based on keyword</title><author>Liang Yue ; Shibin Xiao ; Xueqiang Lv ; Tao Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-179abc2739a8ec895f18d94cb7539d5f9393ab58382af7efbe2703728d43c4603</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithm design and analysis</topic><topic>Clustering algorithms</topic><topic>Detection algorithms</topic><topic>Educational institutions</topic><topic>Event detection</topic><topic>Information processing</topic><topic>Information science</topic><topic>K-Means</topic><topic>Keyword</topic><topic>Topic detection</topic><toplevel>online_resources</toplevel><creatorcontrib>Liang Yue</creatorcontrib><creatorcontrib>Shibin Xiao</creatorcontrib><creatorcontrib>Xueqiang Lv</creatorcontrib><creatorcontrib>Tao Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liang Yue</au><au>Shibin Xiao</au><au>Xueqiang Lv</au><au>Tao Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Topic detection based on keyword</atitle><btitle>2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC)</btitle><stitle>MEC</stitle><date>2011-08</date><risdate>2011</risdate><spage>464</spage><epage>467</epage><pages>464-467</pages><isbn>1612847196</isbn><isbn>9781612847191</isbn><eisbn>1612847218</eisbn><eisbn>9781612847214</eisbn><eisbn>1612847226</eisbn><eisbn>9781612847221</eisbn><abstract>Topic Detection is a sub-task of Topic Detection and Tracking, its main task is to find and organize topics that system didn't know. By analyzing hundreds of website news reports, we find that usually there exist some keywords in text, and early study didn't pay enough attention to this, we propose a topic detection algorithm according this. The algorithm is based on K-means clustering algorithm, choose keywords and enhance the weight of keywords. Experiment proves it can improve the efficiency of system.</abstract><pub>IEEE</pub><doi>10.1109/MEC.2011.6025502</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1612847196 |
ispartof | 2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC), 2011, p.464-467 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6025502 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Clustering algorithms Detection algorithms Educational institutions Event detection Information processing Information science K-Means Keyword Topic detection |
title | Topic detection based on keyword |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T12%3A24%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Topic%20detection%20based%20on%20keyword&rft.btitle=2011%20International%20Conference%20on%20Mechatronic%20Science,%20Electric%20Engineering%20and%20Computer%20(MEC)&rft.au=Liang%20Yue&rft.date=2011-08&rft.spage=464&rft.epage=467&rft.pages=464-467&rft.isbn=1612847196&rft.isbn_list=9781612847191&rft_id=info:doi/10.1109/MEC.2011.6025502&rft_dat=%3Cieee_6IE%3E6025502%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1612847218&rft.eisbn_list=9781612847214&rft.eisbn_list=1612847226&rft.eisbn_list=9781612847221&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6025502&rfr_iscdi=true |