An improved threshold cluster analysis algorithm for the energy consumption optimization of the aluminum industrial production

The model for the energy consumption problem of the aluminum industrial production is established in this paper, and the energy consumption situation out of one ton of aluminum production is calculated. The threshold cluster analysis algorithm is a method of saving energy of the producing process. H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xiaofang Lou, Wei Zhang, Junxian Liu, Huihua Cheng, Fengxing Zou
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 566
container_issue
container_start_page 561
container_title
container_volume 2
creator Xiaofang Lou
Wei Zhang
Junxian Liu
Huihua Cheng
Fengxing Zou
description The model for the energy consumption problem of the aluminum industrial production is established in this paper, and the energy consumption situation out of one ton of aluminum production is calculated. The threshold cluster analysis algorithm is a method of saving energy of the producing process. However, the choice of its distance threshold is somewhat random, so further work has been done to improve the algorithm's performance, that is calculating the distance threshold with a function of the maximum distance and the minimum distance between all of the energy consumption data. Through simulation experiments and comparative analysis, the fact that the improved algorithm performs better is shown. A better reasonable input can be found faster, and the energy saving of the aluminum industrial production is much more effective.
doi_str_mv 10.1109/EMEIT.2011.6023164
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6023164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6023164</ieee_id><sourcerecordid>6023164</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-adea893f7e50dd4c4f5209c228c8d263da5d6dc1fe213da3e8e0a3f08e0d49fe3</originalsourceid><addsrcrecordid>eNpVkM1KAzEUhSMiKLUvoJu8QGt-ZtJkWUrVQsXN7EtIbtpIfkoyI9SFz-5ou_FuDh98nAMXoQdK5pQS9bR-W2-6OSOUzgVhnIrmCk3VQlJBmWyIFM31P17QWzSt9YOMJ4RirbhD38uEfTyW_AkW94cC9ZCDxSYMtYeCddLhVH3FOuxz8f0hYpfLKAKGBGV_wianOsRj73PCeYzov_QZ3J-mwxB9GiL2yY6dxeuAxzk7mF_rHt04HSpMLzlB3fO6W73Otu8vm9VyO_OK9DNtQUvF3QJaYm1jGtcyogxj0kjLBLe6tcIa6oDREThIIJo7MoZtlAM-QY_nWg8Au2PxUZfT7vI0_gN3JmVC</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An improved threshold cluster analysis algorithm for the energy consumption optimization of the aluminum industrial production</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xiaofang Lou ; Wei Zhang ; Junxian Liu ; Huihua Cheng ; Fengxing Zou</creator><creatorcontrib>Xiaofang Lou ; Wei Zhang ; Junxian Liu ; Huihua Cheng ; Fengxing Zou</creatorcontrib><description>The model for the energy consumption problem of the aluminum industrial production is established in this paper, and the energy consumption situation out of one ton of aluminum production is calculated. The threshold cluster analysis algorithm is a method of saving energy of the producing process. However, the choice of its distance threshold is somewhat random, so further work has been done to improve the algorithm's performance, that is calculating the distance threshold with a function of the maximum distance and the minimum distance between all of the energy consumption data. Through simulation experiments and comparative analysis, the fact that the improved algorithm performs better is shown. A better reasonable input can be found faster, and the energy saving of the aluminum industrial production is much more effective.</description><identifier>ISBN: 9781612840871</identifier><identifier>ISBN: 1612840876</identifier><identifier>EISBN: 9781612840864</identifier><identifier>EISBN: 9781612840888</identifier><identifier>EISBN: 1612840884</identifier><identifier>EISBN: 1612840868</identifier><identifier>DOI: 10.1109/EMEIT.2011.6023164</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Aluminum ; Aluminum Industrial Production ; Analytical models ; Classification algorithms ; Clustering algorithms ; Data Mining Technology ; Distance Threshold ; Energy consumption ; Energy Consumption Model ; Energy Consumption Optimization ; Improved Threshold Cluster Analysis Algorithm ; Production ; Simulation</subject><ispartof>Proceedings of 2011 International Conference on Electronic &amp; Mechanical Engineering and Information Technology, 2011, Vol.2, p.561-566</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6023164$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6023164$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiaofang Lou</creatorcontrib><creatorcontrib>Wei Zhang</creatorcontrib><creatorcontrib>Junxian Liu</creatorcontrib><creatorcontrib>Huihua Cheng</creatorcontrib><creatorcontrib>Fengxing Zou</creatorcontrib><title>An improved threshold cluster analysis algorithm for the energy consumption optimization of the aluminum industrial production</title><title>Proceedings of 2011 International Conference on Electronic &amp; Mechanical Engineering and Information Technology</title><addtitle>EMEIT</addtitle><description>The model for the energy consumption problem of the aluminum industrial production is established in this paper, and the energy consumption situation out of one ton of aluminum production is calculated. The threshold cluster analysis algorithm is a method of saving energy of the producing process. However, the choice of its distance threshold is somewhat random, so further work has been done to improve the algorithm's performance, that is calculating the distance threshold with a function of the maximum distance and the minimum distance between all of the energy consumption data. Through simulation experiments and comparative analysis, the fact that the improved algorithm performs better is shown. A better reasonable input can be found faster, and the energy saving of the aluminum industrial production is much more effective.</description><subject>Algorithm design and analysis</subject><subject>Aluminum</subject><subject>Aluminum Industrial Production</subject><subject>Analytical models</subject><subject>Classification algorithms</subject><subject>Clustering algorithms</subject><subject>Data Mining Technology</subject><subject>Distance Threshold</subject><subject>Energy consumption</subject><subject>Energy Consumption Model</subject><subject>Energy Consumption Optimization</subject><subject>Improved Threshold Cluster Analysis Algorithm</subject><subject>Production</subject><subject>Simulation</subject><isbn>9781612840871</isbn><isbn>1612840876</isbn><isbn>9781612840864</isbn><isbn>9781612840888</isbn><isbn>1612840884</isbn><isbn>1612840868</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1KAzEUhSMiKLUvoJu8QGt-ZtJkWUrVQsXN7EtIbtpIfkoyI9SFz-5ou_FuDh98nAMXoQdK5pQS9bR-W2-6OSOUzgVhnIrmCk3VQlJBmWyIFM31P17QWzSt9YOMJ4RirbhD38uEfTyW_AkW94cC9ZCDxSYMtYeCddLhVH3FOuxz8f0hYpfLKAKGBGV_wianOsRj73PCeYzov_QZ3J-mwxB9GiL2yY6dxeuAxzk7mF_rHt04HSpMLzlB3fO6W73Otu8vm9VyO_OK9DNtQUvF3QJaYm1jGtcyogxj0kjLBLe6tcIa6oDREThIIJo7MoZtlAM-QY_nWg8Au2PxUZfT7vI0_gN3JmVC</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>Xiaofang Lou</creator><creator>Wei Zhang</creator><creator>Junxian Liu</creator><creator>Huihua Cheng</creator><creator>Fengxing Zou</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201108</creationdate><title>An improved threshold cluster analysis algorithm for the energy consumption optimization of the aluminum industrial production</title><author>Xiaofang Lou ; Wei Zhang ; Junxian Liu ; Huihua Cheng ; Fengxing Zou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-adea893f7e50dd4c4f5209c228c8d263da5d6dc1fe213da3e8e0a3f08e0d49fe3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithm design and analysis</topic><topic>Aluminum</topic><topic>Aluminum Industrial Production</topic><topic>Analytical models</topic><topic>Classification algorithms</topic><topic>Clustering algorithms</topic><topic>Data Mining Technology</topic><topic>Distance Threshold</topic><topic>Energy consumption</topic><topic>Energy Consumption Model</topic><topic>Energy Consumption Optimization</topic><topic>Improved Threshold Cluster Analysis Algorithm</topic><topic>Production</topic><topic>Simulation</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiaofang Lou</creatorcontrib><creatorcontrib>Wei Zhang</creatorcontrib><creatorcontrib>Junxian Liu</creatorcontrib><creatorcontrib>Huihua Cheng</creatorcontrib><creatorcontrib>Fengxing Zou</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiaofang Lou</au><au>Wei Zhang</au><au>Junxian Liu</au><au>Huihua Cheng</au><au>Fengxing Zou</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An improved threshold cluster analysis algorithm for the energy consumption optimization of the aluminum industrial production</atitle><btitle>Proceedings of 2011 International Conference on Electronic &amp; Mechanical Engineering and Information Technology</btitle><stitle>EMEIT</stitle><date>2011-08</date><risdate>2011</risdate><volume>2</volume><spage>561</spage><epage>566</epage><pages>561-566</pages><isbn>9781612840871</isbn><isbn>1612840876</isbn><eisbn>9781612840864</eisbn><eisbn>9781612840888</eisbn><eisbn>1612840884</eisbn><eisbn>1612840868</eisbn><abstract>The model for the energy consumption problem of the aluminum industrial production is established in this paper, and the energy consumption situation out of one ton of aluminum production is calculated. The threshold cluster analysis algorithm is a method of saving energy of the producing process. However, the choice of its distance threshold is somewhat random, so further work has been done to improve the algorithm's performance, that is calculating the distance threshold with a function of the maximum distance and the minimum distance between all of the energy consumption data. Through simulation experiments and comparative analysis, the fact that the improved algorithm performs better is shown. A better reasonable input can be found faster, and the energy saving of the aluminum industrial production is much more effective.</abstract><pub>IEEE</pub><doi>10.1109/EMEIT.2011.6023164</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781612840871
ispartof Proceedings of 2011 International Conference on Electronic & Mechanical Engineering and Information Technology, 2011, Vol.2, p.561-566
issn
language eng
recordid cdi_ieee_primary_6023164
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Aluminum
Aluminum Industrial Production
Analytical models
Classification algorithms
Clustering algorithms
Data Mining Technology
Distance Threshold
Energy consumption
Energy Consumption Model
Energy Consumption Optimization
Improved Threshold Cluster Analysis Algorithm
Production
Simulation
title An improved threshold cluster analysis algorithm for the energy consumption optimization of the aluminum industrial production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T14%3A41%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20improved%20threshold%20cluster%20analysis%20algorithm%20for%20the%20energy%20consumption%20optimization%20of%20the%20aluminum%20industrial%20production&rft.btitle=Proceedings%20of%202011%20International%20Conference%20on%20Electronic%20&%20Mechanical%20Engineering%20and%20Information%20Technology&rft.au=Xiaofang%20Lou&rft.date=2011-08&rft.volume=2&rft.spage=561&rft.epage=566&rft.pages=561-566&rft.isbn=9781612840871&rft.isbn_list=1612840876&rft_id=info:doi/10.1109/EMEIT.2011.6023164&rft_dat=%3Cieee_6IE%3E6023164%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781612840864&rft.eisbn_list=9781612840888&rft.eisbn_list=1612840884&rft.eisbn_list=1612840868&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6023164&rfr_iscdi=true