An improved threshold cluster analysis algorithm for the energy consumption optimization of the aluminum industrial production
The model for the energy consumption problem of the aluminum industrial production is established in this paper, and the energy consumption situation out of one ton of aluminum production is calculated. The threshold cluster analysis algorithm is a method of saving energy of the producing process. H...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 566 |
---|---|
container_issue | |
container_start_page | 561 |
container_title | |
container_volume | 2 |
creator | Xiaofang Lou Wei Zhang Junxian Liu Huihua Cheng Fengxing Zou |
description | The model for the energy consumption problem of the aluminum industrial production is established in this paper, and the energy consumption situation out of one ton of aluminum production is calculated. The threshold cluster analysis algorithm is a method of saving energy of the producing process. However, the choice of its distance threshold is somewhat random, so further work has been done to improve the algorithm's performance, that is calculating the distance threshold with a function of the maximum distance and the minimum distance between all of the energy consumption data. Through simulation experiments and comparative analysis, the fact that the improved algorithm performs better is shown. A better reasonable input can be found faster, and the energy saving of the aluminum industrial production is much more effective. |
doi_str_mv | 10.1109/EMEIT.2011.6023164 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6023164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6023164</ieee_id><sourcerecordid>6023164</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-adea893f7e50dd4c4f5209c228c8d263da5d6dc1fe213da3e8e0a3f08e0d49fe3</originalsourceid><addsrcrecordid>eNpVkM1KAzEUhSMiKLUvoJu8QGt-ZtJkWUrVQsXN7EtIbtpIfkoyI9SFz-5ou_FuDh98nAMXoQdK5pQS9bR-W2-6OSOUzgVhnIrmCk3VQlJBmWyIFM31P17QWzSt9YOMJ4RirbhD38uEfTyW_AkW94cC9ZCDxSYMtYeCddLhVH3FOuxz8f0hYpfLKAKGBGV_wianOsRj73PCeYzov_QZ3J-mwxB9GiL2yY6dxeuAxzk7mF_rHt04HSpMLzlB3fO6W73Otu8vm9VyO_OK9DNtQUvF3QJaYm1jGtcyogxj0kjLBLe6tcIa6oDREThIIJo7MoZtlAM-QY_nWg8Au2PxUZfT7vI0_gN3JmVC</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An improved threshold cluster analysis algorithm for the energy consumption optimization of the aluminum industrial production</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xiaofang Lou ; Wei Zhang ; Junxian Liu ; Huihua Cheng ; Fengxing Zou</creator><creatorcontrib>Xiaofang Lou ; Wei Zhang ; Junxian Liu ; Huihua Cheng ; Fengxing Zou</creatorcontrib><description>The model for the energy consumption problem of the aluminum industrial production is established in this paper, and the energy consumption situation out of one ton of aluminum production is calculated. The threshold cluster analysis algorithm is a method of saving energy of the producing process. However, the choice of its distance threshold is somewhat random, so further work has been done to improve the algorithm's performance, that is calculating the distance threshold with a function of the maximum distance and the minimum distance between all of the energy consumption data. Through simulation experiments and comparative analysis, the fact that the improved algorithm performs better is shown. A better reasonable input can be found faster, and the energy saving of the aluminum industrial production is much more effective.</description><identifier>ISBN: 9781612840871</identifier><identifier>ISBN: 1612840876</identifier><identifier>EISBN: 9781612840864</identifier><identifier>EISBN: 9781612840888</identifier><identifier>EISBN: 1612840884</identifier><identifier>EISBN: 1612840868</identifier><identifier>DOI: 10.1109/EMEIT.2011.6023164</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Aluminum ; Aluminum Industrial Production ; Analytical models ; Classification algorithms ; Clustering algorithms ; Data Mining Technology ; Distance Threshold ; Energy consumption ; Energy Consumption Model ; Energy Consumption Optimization ; Improved Threshold Cluster Analysis Algorithm ; Production ; Simulation</subject><ispartof>Proceedings of 2011 International Conference on Electronic & Mechanical Engineering and Information Technology, 2011, Vol.2, p.561-566</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6023164$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6023164$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiaofang Lou</creatorcontrib><creatorcontrib>Wei Zhang</creatorcontrib><creatorcontrib>Junxian Liu</creatorcontrib><creatorcontrib>Huihua Cheng</creatorcontrib><creatorcontrib>Fengxing Zou</creatorcontrib><title>An improved threshold cluster analysis algorithm for the energy consumption optimization of the aluminum industrial production</title><title>Proceedings of 2011 International Conference on Electronic & Mechanical Engineering and Information Technology</title><addtitle>EMEIT</addtitle><description>The model for the energy consumption problem of the aluminum industrial production is established in this paper, and the energy consumption situation out of one ton of aluminum production is calculated. The threshold cluster analysis algorithm is a method of saving energy of the producing process. However, the choice of its distance threshold is somewhat random, so further work has been done to improve the algorithm's performance, that is calculating the distance threshold with a function of the maximum distance and the minimum distance between all of the energy consumption data. Through simulation experiments and comparative analysis, the fact that the improved algorithm performs better is shown. A better reasonable input can be found faster, and the energy saving of the aluminum industrial production is much more effective.</description><subject>Algorithm design and analysis</subject><subject>Aluminum</subject><subject>Aluminum Industrial Production</subject><subject>Analytical models</subject><subject>Classification algorithms</subject><subject>Clustering algorithms</subject><subject>Data Mining Technology</subject><subject>Distance Threshold</subject><subject>Energy consumption</subject><subject>Energy Consumption Model</subject><subject>Energy Consumption Optimization</subject><subject>Improved Threshold Cluster Analysis Algorithm</subject><subject>Production</subject><subject>Simulation</subject><isbn>9781612840871</isbn><isbn>1612840876</isbn><isbn>9781612840864</isbn><isbn>9781612840888</isbn><isbn>1612840884</isbn><isbn>1612840868</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1KAzEUhSMiKLUvoJu8QGt-ZtJkWUrVQsXN7EtIbtpIfkoyI9SFz-5ou_FuDh98nAMXoQdK5pQS9bR-W2-6OSOUzgVhnIrmCk3VQlJBmWyIFM31P17QWzSt9YOMJ4RirbhD38uEfTyW_AkW94cC9ZCDxSYMtYeCddLhVH3FOuxz8f0hYpfLKAKGBGV_wianOsRj73PCeYzov_QZ3J-mwxB9GiL2yY6dxeuAxzk7mF_rHt04HSpMLzlB3fO6W73Otu8vm9VyO_OK9DNtQUvF3QJaYm1jGtcyogxj0kjLBLe6tcIa6oDREThIIJo7MoZtlAM-QY_nWg8Au2PxUZfT7vI0_gN3JmVC</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>Xiaofang Lou</creator><creator>Wei Zhang</creator><creator>Junxian Liu</creator><creator>Huihua Cheng</creator><creator>Fengxing Zou</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201108</creationdate><title>An improved threshold cluster analysis algorithm for the energy consumption optimization of the aluminum industrial production</title><author>Xiaofang Lou ; Wei Zhang ; Junxian Liu ; Huihua Cheng ; Fengxing Zou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-adea893f7e50dd4c4f5209c228c8d263da5d6dc1fe213da3e8e0a3f08e0d49fe3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithm design and analysis</topic><topic>Aluminum</topic><topic>Aluminum Industrial Production</topic><topic>Analytical models</topic><topic>Classification algorithms</topic><topic>Clustering algorithms</topic><topic>Data Mining Technology</topic><topic>Distance Threshold</topic><topic>Energy consumption</topic><topic>Energy Consumption Model</topic><topic>Energy Consumption Optimization</topic><topic>Improved Threshold Cluster Analysis Algorithm</topic><topic>Production</topic><topic>Simulation</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiaofang Lou</creatorcontrib><creatorcontrib>Wei Zhang</creatorcontrib><creatorcontrib>Junxian Liu</creatorcontrib><creatorcontrib>Huihua Cheng</creatorcontrib><creatorcontrib>Fengxing Zou</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiaofang Lou</au><au>Wei Zhang</au><au>Junxian Liu</au><au>Huihua Cheng</au><au>Fengxing Zou</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An improved threshold cluster analysis algorithm for the energy consumption optimization of the aluminum industrial production</atitle><btitle>Proceedings of 2011 International Conference on Electronic & Mechanical Engineering and Information Technology</btitle><stitle>EMEIT</stitle><date>2011-08</date><risdate>2011</risdate><volume>2</volume><spage>561</spage><epage>566</epage><pages>561-566</pages><isbn>9781612840871</isbn><isbn>1612840876</isbn><eisbn>9781612840864</eisbn><eisbn>9781612840888</eisbn><eisbn>1612840884</eisbn><eisbn>1612840868</eisbn><abstract>The model for the energy consumption problem of the aluminum industrial production is established in this paper, and the energy consumption situation out of one ton of aluminum production is calculated. The threshold cluster analysis algorithm is a method of saving energy of the producing process. However, the choice of its distance threshold is somewhat random, so further work has been done to improve the algorithm's performance, that is calculating the distance threshold with a function of the maximum distance and the minimum distance between all of the energy consumption data. Through simulation experiments and comparative analysis, the fact that the improved algorithm performs better is shown. A better reasonable input can be found faster, and the energy saving of the aluminum industrial production is much more effective.</abstract><pub>IEEE</pub><doi>10.1109/EMEIT.2011.6023164</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781612840871 |
ispartof | Proceedings of 2011 International Conference on Electronic & Mechanical Engineering and Information Technology, 2011, Vol.2, p.561-566 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6023164 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Aluminum Aluminum Industrial Production Analytical models Classification algorithms Clustering algorithms Data Mining Technology Distance Threshold Energy consumption Energy Consumption Model Energy Consumption Optimization Improved Threshold Cluster Analysis Algorithm Production Simulation |
title | An improved threshold cluster analysis algorithm for the energy consumption optimization of the aluminum industrial production |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T14%3A41%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20improved%20threshold%20cluster%20analysis%20algorithm%20for%20the%20energy%20consumption%20optimization%20of%20the%20aluminum%20industrial%20production&rft.btitle=Proceedings%20of%202011%20International%20Conference%20on%20Electronic%20&%20Mechanical%20Engineering%20and%20Information%20Technology&rft.au=Xiaofang%20Lou&rft.date=2011-08&rft.volume=2&rft.spage=561&rft.epage=566&rft.pages=561-566&rft.isbn=9781612840871&rft.isbn_list=1612840876&rft_id=info:doi/10.1109/EMEIT.2011.6023164&rft_dat=%3Cieee_6IE%3E6023164%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781612840864&rft.eisbn_list=9781612840888&rft.eisbn_list=1612840884&rft.eisbn_list=1612840868&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6023164&rfr_iscdi=true |