Chaotic GEP algorithm for dynamic multi-objective optimization

Dynamic Multi-objective Optimization (DMO) is a new research topic in the field of evolutionary computation in recent years. As Gene Expression Programming (GEP) has a powerful search capability, a new algorithm for DMO called D-GEP Chaotic NSGA-II is proposed. The algorithm is designed on the class...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Weihong Wang, Yanye Du, Qu Li, Zhaolin Fang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1071
container_issue
container_start_page 1067
container_title
container_volume 2
creator Weihong Wang
Yanye Du
Qu Li
Zhaolin Fang
description Dynamic Multi-objective Optimization (DMO) is a new research topic in the field of evolutionary computation in recent years. As Gene Expression Programming (GEP) has a powerful search capability, a new algorithm for DMO called D-GEP Chaotic NSGA-II is proposed. The algorithm is designed on the classic multi-objective optimization algorithm NSGA-II to make it suitable for DMO, while using GEP for encoding and chaotic variables for generating initial population. The experiments on test problems of three different types have shown that the algorithm has better performance on convergence, diversity and the breadth of the distribution.
doi_str_mv 10.1109/ICNC.2011.6022293
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6022293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6022293</ieee_id><sourcerecordid>6022293</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-5237f71d14ebe1908d31cb7fa6066f47bce47e302b11e70f6651a33b5ace47d53</originalsourceid><addsrcrecordid>eNpVkM1KAzEURiMqWOo8gLiZF5jx3vw2G0FCrYWiLrovyUxiU2aaMhOF-vRa7MbV4ePAtziE3CHUiKAflubV1BQQawmUUs0uSKHVDDnlXGtB5eW_DfSKTCgKVWkhxA0pxnEHAAyVUqAn5NFsbcqxKRfz99J2H2mIeduXIQ1le9zb_tf0n12OVXI73-T45ct0yLGP3zbHtL8l18F2oy_OnJL183xtXqrV22JpnlZV1JArQZkKClvk3nnUMGsZNk4FK0HKwJVrPFeeAXWIXkGQUqBlzAl7Eq1gU3L_dxu995vDEHs7HDfnAOwHj31MBA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Chaotic GEP algorithm for dynamic multi-objective optimization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Weihong Wang ; Yanye Du ; Qu Li ; Zhaolin Fang</creator><creatorcontrib>Weihong Wang ; Yanye Du ; Qu Li ; Zhaolin Fang</creatorcontrib><description>Dynamic Multi-objective Optimization (DMO) is a new research topic in the field of evolutionary computation in recent years. As Gene Expression Programming (GEP) has a powerful search capability, a new algorithm for DMO called D-GEP Chaotic NSGA-II is proposed. The algorithm is designed on the classic multi-objective optimization algorithm NSGA-II to make it suitable for DMO, while using GEP for encoding and chaotic variables for generating initial population. The experiments on test problems of three different types have shown that the algorithm has better performance on convergence, diversity and the breadth of the distribution.</description><identifier>ISSN: 2157-9555</identifier><identifier>ISBN: 9781424499502</identifier><identifier>ISBN: 142449950X</identifier><identifier>EISBN: 9781424499526</identifier><identifier>EISBN: 1424499534</identifier><identifier>EISBN: 9781424499533</identifier><identifier>EISBN: 1424499526</identifier><identifier>DOI: 10.1109/ICNC.2011.6022293</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Chaos ; Chaotic Optimization ; Convergence ; Dynamic Multi-objective Optimization (DMO) ; Gene expression ; Gene Expression Programming (GEP) ; Heuristic algorithms ; Optimization ; Programming</subject><ispartof>2011 Seventh International Conference on Natural Computation, 2011, Vol.2, p.1067-1071</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6022293$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6022293$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Weihong Wang</creatorcontrib><creatorcontrib>Yanye Du</creatorcontrib><creatorcontrib>Qu Li</creatorcontrib><creatorcontrib>Zhaolin Fang</creatorcontrib><title>Chaotic GEP algorithm for dynamic multi-objective optimization</title><title>2011 Seventh International Conference on Natural Computation</title><addtitle>ICNC</addtitle><description>Dynamic Multi-objective Optimization (DMO) is a new research topic in the field of evolutionary computation in recent years. As Gene Expression Programming (GEP) has a powerful search capability, a new algorithm for DMO called D-GEP Chaotic NSGA-II is proposed. The algorithm is designed on the classic multi-objective optimization algorithm NSGA-II to make it suitable for DMO, while using GEP for encoding and chaotic variables for generating initial population. The experiments on test problems of three different types have shown that the algorithm has better performance on convergence, diversity and the breadth of the distribution.</description><subject>Algorithm design and analysis</subject><subject>Chaos</subject><subject>Chaotic Optimization</subject><subject>Convergence</subject><subject>Dynamic Multi-objective Optimization (DMO)</subject><subject>Gene expression</subject><subject>Gene Expression Programming (GEP)</subject><subject>Heuristic algorithms</subject><subject>Optimization</subject><subject>Programming</subject><issn>2157-9555</issn><isbn>9781424499502</isbn><isbn>142449950X</isbn><isbn>9781424499526</isbn><isbn>1424499534</isbn><isbn>9781424499533</isbn><isbn>1424499526</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1KAzEURiMqWOo8gLiZF5jx3vw2G0FCrYWiLrovyUxiU2aaMhOF-vRa7MbV4ePAtziE3CHUiKAflubV1BQQawmUUs0uSKHVDDnlXGtB5eW_DfSKTCgKVWkhxA0pxnEHAAyVUqAn5NFsbcqxKRfz99J2H2mIeduXIQ1le9zb_tf0n12OVXI73-T45ct0yLGP3zbHtL8l18F2oy_OnJL183xtXqrV22JpnlZV1JArQZkKClvk3nnUMGsZNk4FK0HKwJVrPFeeAXWIXkGQUqBlzAl7Eq1gU3L_dxu995vDEHs7HDfnAOwHj31MBA</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Weihong Wang</creator><creator>Yanye Du</creator><creator>Qu Li</creator><creator>Zhaolin Fang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201107</creationdate><title>Chaotic GEP algorithm for dynamic multi-objective optimization</title><author>Weihong Wang ; Yanye Du ; Qu Li ; Zhaolin Fang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-5237f71d14ebe1908d31cb7fa6066f47bce47e302b11e70f6651a33b5ace47d53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithm design and analysis</topic><topic>Chaos</topic><topic>Chaotic Optimization</topic><topic>Convergence</topic><topic>Dynamic Multi-objective Optimization (DMO)</topic><topic>Gene expression</topic><topic>Gene Expression Programming (GEP)</topic><topic>Heuristic algorithms</topic><topic>Optimization</topic><topic>Programming</topic><toplevel>online_resources</toplevel><creatorcontrib>Weihong Wang</creatorcontrib><creatorcontrib>Yanye Du</creatorcontrib><creatorcontrib>Qu Li</creatorcontrib><creatorcontrib>Zhaolin Fang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Weihong Wang</au><au>Yanye Du</au><au>Qu Li</au><au>Zhaolin Fang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Chaotic GEP algorithm for dynamic multi-objective optimization</atitle><btitle>2011 Seventh International Conference on Natural Computation</btitle><stitle>ICNC</stitle><date>2011-07</date><risdate>2011</risdate><volume>2</volume><spage>1067</spage><epage>1071</epage><pages>1067-1071</pages><issn>2157-9555</issn><isbn>9781424499502</isbn><isbn>142449950X</isbn><eisbn>9781424499526</eisbn><eisbn>1424499534</eisbn><eisbn>9781424499533</eisbn><eisbn>1424499526</eisbn><abstract>Dynamic Multi-objective Optimization (DMO) is a new research topic in the field of evolutionary computation in recent years. As Gene Expression Programming (GEP) has a powerful search capability, a new algorithm for DMO called D-GEP Chaotic NSGA-II is proposed. The algorithm is designed on the classic multi-objective optimization algorithm NSGA-II to make it suitable for DMO, while using GEP for encoding and chaotic variables for generating initial population. The experiments on test problems of three different types have shown that the algorithm has better performance on convergence, diversity and the breadth of the distribution.</abstract><pub>IEEE</pub><doi>10.1109/ICNC.2011.6022293</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2157-9555
ispartof 2011 Seventh International Conference on Natural Computation, 2011, Vol.2, p.1067-1071
issn 2157-9555
language eng
recordid cdi_ieee_primary_6022293
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Chaos
Chaotic Optimization
Convergence
Dynamic Multi-objective Optimization (DMO)
Gene expression
Gene Expression Programming (GEP)
Heuristic algorithms
Optimization
Programming
title Chaotic GEP algorithm for dynamic multi-objective optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A51%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Chaotic%20GEP%20algorithm%20for%20dynamic%20multi-objective%20optimization&rft.btitle=2011%20Seventh%20International%20Conference%20on%20Natural%20Computation&rft.au=Weihong%20Wang&rft.date=2011-07&rft.volume=2&rft.spage=1067&rft.epage=1071&rft.pages=1067-1071&rft.issn=2157-9555&rft.isbn=9781424499502&rft.isbn_list=142449950X&rft_id=info:doi/10.1109/ICNC.2011.6022293&rft_dat=%3Cieee_6IE%3E6022293%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424499526&rft.eisbn_list=1424499534&rft.eisbn_list=9781424499533&rft.eisbn_list=1424499526&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6022293&rfr_iscdi=true