Optimal Scheduling of Vehicle-to-Grid Energy and Ancillary Services

Vehicle-to-grid (V2G), the provision of energy and ancillary services from an electric vehicle (EV) to the grid, has the potential to offer financial benefits to EV owners and system benefits to utilities. In this work a V2G algorithm is developed to optimize energy and ancillary services scheduling...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on smart grid 2012-03, Vol.3 (1), p.351-359
Hauptverfasser: Sortomme, E., El-Sharkawi, M. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 359
container_issue 1
container_start_page 351
container_title IEEE transactions on smart grid
container_volume 3
creator Sortomme, E.
El-Sharkawi, M. A.
description Vehicle-to-grid (V2G), the provision of energy and ancillary services from an electric vehicle (EV) to the grid, has the potential to offer financial benefits to EV owners and system benefits to utilities. In this work a V2G algorithm is developed to optimize energy and ancillary services scheduling. The ancillary services considered are load regulation and spinning reserves. The algorithm is developed to be used by an aggregator, which may be a utility or a third party. This algorithm maximizes profits to the aggregator while providing additional system flexibility and peak load shaving to the utility and low costs of EV charging to the customer. The formulation also takes into account unplanned EV departures during the contract periods and compensates accordingly. Simulations using a hypothetical group of 10 000 commuter EVs in the ERCOT system using different battery replacement costs demonstrate these significant benefits.
doi_str_mv 10.1109/TSG.2011.2164099
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_6021358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6021358</ieee_id><sourcerecordid>10_1109_TSG_2011_2164099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-4380d632fca52522fe6e950ab048d6b2176922bae0df7aa7608d8f758d946e3e3</originalsourceid><addsrcrecordid>eNo9kLFqwzAQhkVpoSHNXuiiF7B7kmzZGoNJ3UIgg9OuRpZOiYprB9kt-O3rkJB_uX-47zg-Qp4ZxIyBet1XZcyBsZgzmYBSd2TBVKIiAZLd33oqHslqGL5hjhBCcrUgxe40-h_d0soc0f62vjvQ3tEvPHrTYjT2URm8pZsOw2GiurN03RnftjpMtMLw5w0OT-TB6XbA1XUuyefbZl-8R9td-VGst5ERmRyjRORgpeDO6JSnnDuUqFLQDSS5lQ1nmVScNxrBukzrTEJuc5eluVWJRIFiSeBy14R-GAK6-hTm38NUM6jPHurZQ332UF89zMjLBfGIeFuXwJlIc_EPHiJYSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimal Scheduling of Vehicle-to-Grid Energy and Ancillary Services</title><source>IEEE Electronic Library (IEL)</source><creator>Sortomme, E. ; El-Sharkawi, M. A.</creator><creatorcontrib>Sortomme, E. ; El-Sharkawi, M. A.</creatorcontrib><description>Vehicle-to-grid (V2G), the provision of energy and ancillary services from an electric vehicle (EV) to the grid, has the potential to offer financial benefits to EV owners and system benefits to utilities. In this work a V2G algorithm is developed to optimize energy and ancillary services scheduling. The ancillary services considered are load regulation and spinning reserves. The algorithm is developed to be used by an aggregator, which may be a utility or a third party. This algorithm maximizes profits to the aggregator while providing additional system flexibility and peak load shaving to the utility and low costs of EV charging to the customer. The formulation also takes into account unplanned EV departures during the contract periods and compensates accordingly. Simulations using a hypothetical group of 10 000 commuter EVs in the ERCOT system using different battery replacement costs demonstrate these significant benefits.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2011.2164099</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aggregator ; Batteries ; Degradation ; demand response ; Discharges ; Optimal scheduling ; profit optimization ; regulation ; Spinning ; spinning reserves ; System-on-a-chip ; vehicle-to-grid (V2G)</subject><ispartof>IEEE transactions on smart grid, 2012-03, Vol.3 (1), p.351-359</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-4380d632fca52522fe6e950ab048d6b2176922bae0df7aa7608d8f758d946e3e3</citedby><cites>FETCH-LOGICAL-c376t-4380d632fca52522fe6e950ab048d6b2176922bae0df7aa7608d8f758d946e3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6021358$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6021358$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sortomme, E.</creatorcontrib><creatorcontrib>El-Sharkawi, M. A.</creatorcontrib><title>Optimal Scheduling of Vehicle-to-Grid Energy and Ancillary Services</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>Vehicle-to-grid (V2G), the provision of energy and ancillary services from an electric vehicle (EV) to the grid, has the potential to offer financial benefits to EV owners and system benefits to utilities. In this work a V2G algorithm is developed to optimize energy and ancillary services scheduling. The ancillary services considered are load regulation and spinning reserves. The algorithm is developed to be used by an aggregator, which may be a utility or a third party. This algorithm maximizes profits to the aggregator while providing additional system flexibility and peak load shaving to the utility and low costs of EV charging to the customer. The formulation also takes into account unplanned EV departures during the contract periods and compensates accordingly. Simulations using a hypothetical group of 10 000 commuter EVs in the ERCOT system using different battery replacement costs demonstrate these significant benefits.</description><subject>Aggregator</subject><subject>Batteries</subject><subject>Degradation</subject><subject>demand response</subject><subject>Discharges</subject><subject>Optimal scheduling</subject><subject>profit optimization</subject><subject>regulation</subject><subject>Spinning</subject><subject>spinning reserves</subject><subject>System-on-a-chip</subject><subject>vehicle-to-grid (V2G)</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kLFqwzAQhkVpoSHNXuiiF7B7kmzZGoNJ3UIgg9OuRpZOiYprB9kt-O3rkJB_uX-47zg-Qp4ZxIyBet1XZcyBsZgzmYBSd2TBVKIiAZLd33oqHslqGL5hjhBCcrUgxe40-h_d0soc0f62vjvQ3tEvPHrTYjT2URm8pZsOw2GiurN03RnftjpMtMLw5w0OT-TB6XbA1XUuyefbZl-8R9td-VGst5ERmRyjRORgpeDO6JSnnDuUqFLQDSS5lQ1nmVScNxrBukzrTEJuc5eluVWJRIFiSeBy14R-GAK6-hTm38NUM6jPHurZQ332UF89zMjLBfGIeFuXwJlIc_EPHiJYSg</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Sortomme, E.</creator><creator>El-Sharkawi, M. A.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201203</creationdate><title>Optimal Scheduling of Vehicle-to-Grid Energy and Ancillary Services</title><author>Sortomme, E. ; El-Sharkawi, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-4380d632fca52522fe6e950ab048d6b2176922bae0df7aa7608d8f758d946e3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aggregator</topic><topic>Batteries</topic><topic>Degradation</topic><topic>demand response</topic><topic>Discharges</topic><topic>Optimal scheduling</topic><topic>profit optimization</topic><topic>regulation</topic><topic>Spinning</topic><topic>spinning reserves</topic><topic>System-on-a-chip</topic><topic>vehicle-to-grid (V2G)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sortomme, E.</creatorcontrib><creatorcontrib>El-Sharkawi, M. A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sortomme, E.</au><au>El-Sharkawi, M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Scheduling of Vehicle-to-Grid Energy and Ancillary Services</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2012-03</date><risdate>2012</risdate><volume>3</volume><issue>1</issue><spage>351</spage><epage>359</epage><pages>351-359</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>Vehicle-to-grid (V2G), the provision of energy and ancillary services from an electric vehicle (EV) to the grid, has the potential to offer financial benefits to EV owners and system benefits to utilities. In this work a V2G algorithm is developed to optimize energy and ancillary services scheduling. The ancillary services considered are load regulation and spinning reserves. The algorithm is developed to be used by an aggregator, which may be a utility or a third party. This algorithm maximizes profits to the aggregator while providing additional system flexibility and peak load shaving to the utility and low costs of EV charging to the customer. The formulation also takes into account unplanned EV departures during the contract periods and compensates accordingly. Simulations using a hypothetical group of 10 000 commuter EVs in the ERCOT system using different battery replacement costs demonstrate these significant benefits.</abstract><pub>IEEE</pub><doi>10.1109/TSG.2011.2164099</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2012-03, Vol.3 (1), p.351-359
issn 1949-3053
1949-3061
language eng
recordid cdi_ieee_primary_6021358
source IEEE Electronic Library (IEL)
subjects Aggregator
Batteries
Degradation
demand response
Discharges
Optimal scheduling
profit optimization
regulation
Spinning
spinning reserves
System-on-a-chip
vehicle-to-grid (V2G)
title Optimal Scheduling of Vehicle-to-Grid Energy and Ancillary Services
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A25%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Scheduling%20of%20Vehicle-to-Grid%20Energy%20and%20Ancillary%20Services&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Sortomme,%20E.&rft.date=2012-03&rft.volume=3&rft.issue=1&rft.spage=351&rft.epage=359&rft.pages=351-359&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2011.2164099&rft_dat=%3Ccrossref_RIE%3E10_1109_TSG_2011_2164099%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6021358&rfr_iscdi=true