Parallelizing multiclass Support Vector Machines for scalable image annotation

Machine learning techniques have facilitated image retrieval by automatically classifying and annotating images with keywords. Among them Support Vector Machines (SVMs) are used extensively due to their generalization properties. SVM was initially designed for binary classifications. However, most c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Alham, N. K., Maozhen Li, Yang Liu, Hammoud, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2694
container_issue
container_start_page 2691
container_title
container_volume 4
creator Alham, N. K.
Maozhen Li
Yang Liu
Hammoud, S.
description Machine learning techniques have facilitated image retrieval by automatically classifying and annotating images with keywords. Among them Support Vector Machines (SVMs) are used extensively due to their generalization properties. SVM was initially designed for binary classifications. However, most classification problems arising in domains such as image annotation usually involve more than two classes. Notably SVM training is a computationally intensive process especially when the training dataset is large. This paper presents MRMSVM, a distributed multiclass SVM algorithm for large scale image annotation which partitions the training dataset into smaller binary chunks and train SVM in parallel using a cluster of computers. MRMSVM is evaluated in an experimental environment showing that the distributed Multiclass SVM algorithm reduces the training time significantly while maintaining a high level of accuracy in classifications.
doi_str_mv 10.1109/FSKD.2011.6020073
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6020073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6020073</ieee_id><sourcerecordid>6020073</sourcerecordid><originalsourceid>FETCH-LOGICAL-g145t-98ffef125e5de7c9a0a21ecd933fca2a506594010a70471a9b2bcfe913807a613</originalsourceid><addsrcrecordid>eNpVkM1OwzAQhI0QEqj0ARAXv0DKrp3E8REVCojyIxW4Vlt3HYzcJIrTAzw9keiFuXz6LqPRCHGBMEMEe7VYPd7MFCDOSlAARh-JqTUVlqiqHEce_3Owp2Ka0heMKUurTXUmnl-ppxg5hp_Q1HK3j0NwkVKSq33Xtf0gP9gNbS-fyH2GhpP0oyRHkTaRZdhRzZKaph1oCG1zLk48xcTTAyfifXH7Nr_Pli93D_PrZVZjXgyZrbxnj6rgYsvGWQJSyG5rtfaOFBVQFjYHBDKQGyS7URvn2aKuwFCJeiIu_3oDM6-7ftzRf68PL-hfAT1Q7w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Parallelizing multiclass Support Vector Machines for scalable image annotation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Alham, N. K. ; Maozhen Li ; Yang Liu ; Hammoud, S.</creator><creatorcontrib>Alham, N. K. ; Maozhen Li ; Yang Liu ; Hammoud, S.</creatorcontrib><description>Machine learning techniques have facilitated image retrieval by automatically classifying and annotating images with keywords. Among them Support Vector Machines (SVMs) are used extensively due to their generalization properties. SVM was initially designed for binary classifications. However, most classification problems arising in domains such as image annotation usually involve more than two classes. Notably SVM training is a computationally intensive process especially when the training dataset is large. This paper presents MRMSVM, a distributed multiclass SVM algorithm for large scale image annotation which partitions the training dataset into smaller binary chunks and train SVM in parallel using a cluster of computers. MRMSVM is evaluated in an experimental environment showing that the distributed Multiclass SVM algorithm reduces the training time significantly while maintaining a high level of accuracy in classifications.</description><identifier>ISBN: 9781612841809</identifier><identifier>ISBN: 1612841805</identifier><identifier>EISBN: 9781612841816</identifier><identifier>EISBN: 1612841813</identifier><identifier>EISBN: 1612841791</identifier><identifier>EISBN: 9781612841793</identifier><identifier>DOI: 10.1109/FSKD.2011.6020073</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Algorithm design and analysis ; Classification algorithms ; Clustering algorithms ; distributed SVM ; image annotation ; machine learning ; MapReduce ; Multiclass SVM ; Optimization ; Support vector machines ; Training</subject><ispartof>2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), 2011, Vol.4, p.2691-2694</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6020073$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6020073$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Alham, N. K.</creatorcontrib><creatorcontrib>Maozhen Li</creatorcontrib><creatorcontrib>Yang Liu</creatorcontrib><creatorcontrib>Hammoud, S.</creatorcontrib><title>Parallelizing multiclass Support Vector Machines for scalable image annotation</title><title>2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)</title><addtitle>FSKD</addtitle><description>Machine learning techniques have facilitated image retrieval by automatically classifying and annotating images with keywords. Among them Support Vector Machines (SVMs) are used extensively due to their generalization properties. SVM was initially designed for binary classifications. However, most classification problems arising in domains such as image annotation usually involve more than two classes. Notably SVM training is a computationally intensive process especially when the training dataset is large. This paper presents MRMSVM, a distributed multiclass SVM algorithm for large scale image annotation which partitions the training dataset into smaller binary chunks and train SVM in parallel using a cluster of computers. MRMSVM is evaluated in an experimental environment showing that the distributed Multiclass SVM algorithm reduces the training time significantly while maintaining a high level of accuracy in classifications.</description><subject>Accuracy</subject><subject>Algorithm design and analysis</subject><subject>Classification algorithms</subject><subject>Clustering algorithms</subject><subject>distributed SVM</subject><subject>image annotation</subject><subject>machine learning</subject><subject>MapReduce</subject><subject>Multiclass SVM</subject><subject>Optimization</subject><subject>Support vector machines</subject><subject>Training</subject><isbn>9781612841809</isbn><isbn>1612841805</isbn><isbn>9781612841816</isbn><isbn>1612841813</isbn><isbn>1612841791</isbn><isbn>9781612841793</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1OwzAQhI0QEqj0ARAXv0DKrp3E8REVCojyIxW4Vlt3HYzcJIrTAzw9keiFuXz6LqPRCHGBMEMEe7VYPd7MFCDOSlAARh-JqTUVlqiqHEce_3Owp2Ka0heMKUurTXUmnl-ppxg5hp_Q1HK3j0NwkVKSq33Xtf0gP9gNbS-fyH2GhpP0oyRHkTaRZdhRzZKaph1oCG1zLk48xcTTAyfifXH7Nr_Pli93D_PrZVZjXgyZrbxnj6rgYsvGWQJSyG5rtfaOFBVQFjYHBDKQGyS7URvn2aKuwFCJeiIu_3oDM6-7ftzRf68PL-hfAT1Q7w</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Alham, N. K.</creator><creator>Maozhen Li</creator><creator>Yang Liu</creator><creator>Hammoud, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201107</creationdate><title>Parallelizing multiclass Support Vector Machines for scalable image annotation</title><author>Alham, N. K. ; Maozhen Li ; Yang Liu ; Hammoud, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g145t-98ffef125e5de7c9a0a21ecd933fca2a506594010a70471a9b2bcfe913807a613</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accuracy</topic><topic>Algorithm design and analysis</topic><topic>Classification algorithms</topic><topic>Clustering algorithms</topic><topic>distributed SVM</topic><topic>image annotation</topic><topic>machine learning</topic><topic>MapReduce</topic><topic>Multiclass SVM</topic><topic>Optimization</topic><topic>Support vector machines</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Alham, N. K.</creatorcontrib><creatorcontrib>Maozhen Li</creatorcontrib><creatorcontrib>Yang Liu</creatorcontrib><creatorcontrib>Hammoud, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alham, N. K.</au><au>Maozhen Li</au><au>Yang Liu</au><au>Hammoud, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Parallelizing multiclass Support Vector Machines for scalable image annotation</atitle><btitle>2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)</btitle><stitle>FSKD</stitle><date>2011-07</date><risdate>2011</risdate><volume>4</volume><spage>2691</spage><epage>2694</epage><pages>2691-2694</pages><isbn>9781612841809</isbn><isbn>1612841805</isbn><eisbn>9781612841816</eisbn><eisbn>1612841813</eisbn><eisbn>1612841791</eisbn><eisbn>9781612841793</eisbn><abstract>Machine learning techniques have facilitated image retrieval by automatically classifying and annotating images with keywords. Among them Support Vector Machines (SVMs) are used extensively due to their generalization properties. SVM was initially designed for binary classifications. However, most classification problems arising in domains such as image annotation usually involve more than two classes. Notably SVM training is a computationally intensive process especially when the training dataset is large. This paper presents MRMSVM, a distributed multiclass SVM algorithm for large scale image annotation which partitions the training dataset into smaller binary chunks and train SVM in parallel using a cluster of computers. MRMSVM is evaluated in an experimental environment showing that the distributed Multiclass SVM algorithm reduces the training time significantly while maintaining a high level of accuracy in classifications.</abstract><pub>IEEE</pub><doi>10.1109/FSKD.2011.6020073</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781612841809
ispartof 2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), 2011, Vol.4, p.2691-2694
issn
language eng
recordid cdi_ieee_primary_6020073
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Algorithm design and analysis
Classification algorithms
Clustering algorithms
distributed SVM
image annotation
machine learning
MapReduce
Multiclass SVM
Optimization
Support vector machines
Training
title Parallelizing multiclass Support Vector Machines for scalable image annotation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T05%3A50%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Parallelizing%20multiclass%20Support%20Vector%20Machines%20for%20scalable%20image%20annotation&rft.btitle=2011%20Eighth%20International%20Conference%20on%20Fuzzy%20Systems%20and%20Knowledge%20Discovery%20(FSKD)&rft.au=Alham,%20N.%20K.&rft.date=2011-07&rft.volume=4&rft.spage=2691&rft.epage=2694&rft.pages=2691-2694&rft.isbn=9781612841809&rft.isbn_list=1612841805&rft_id=info:doi/10.1109/FSKD.2011.6020073&rft_dat=%3Cieee_6IE%3E6020073%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781612841816&rft.eisbn_list=1612841813&rft.eisbn_list=1612841791&rft.eisbn_list=9781612841793&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6020073&rfr_iscdi=true