Parallelizing multiclass Support Vector Machines for scalable image annotation
Machine learning techniques have facilitated image retrieval by automatically classifying and annotating images with keywords. Among them Support Vector Machines (SVMs) are used extensively due to their generalization properties. SVM was initially designed for binary classifications. However, most c...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2694 |
---|---|
container_issue | |
container_start_page | 2691 |
container_title | |
container_volume | 4 |
creator | Alham, N. K. Maozhen Li Yang Liu Hammoud, S. |
description | Machine learning techniques have facilitated image retrieval by automatically classifying and annotating images with keywords. Among them Support Vector Machines (SVMs) are used extensively due to their generalization properties. SVM was initially designed for binary classifications. However, most classification problems arising in domains such as image annotation usually involve more than two classes. Notably SVM training is a computationally intensive process especially when the training dataset is large. This paper presents MRMSVM, a distributed multiclass SVM algorithm for large scale image annotation which partitions the training dataset into smaller binary chunks and train SVM in parallel using a cluster of computers. MRMSVM is evaluated in an experimental environment showing that the distributed Multiclass SVM algorithm reduces the training time significantly while maintaining a high level of accuracy in classifications. |
doi_str_mv | 10.1109/FSKD.2011.6020073 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6020073</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6020073</ieee_id><sourcerecordid>6020073</sourcerecordid><originalsourceid>FETCH-LOGICAL-g145t-98ffef125e5de7c9a0a21ecd933fca2a506594010a70471a9b2bcfe913807a613</originalsourceid><addsrcrecordid>eNpVkM1OwzAQhI0QEqj0ARAXv0DKrp3E8REVCojyIxW4Vlt3HYzcJIrTAzw9keiFuXz6LqPRCHGBMEMEe7VYPd7MFCDOSlAARh-JqTUVlqiqHEce_3Owp2Ka0heMKUurTXUmnl-ppxg5hp_Q1HK3j0NwkVKSq33Xtf0gP9gNbS-fyH2GhpP0oyRHkTaRZdhRzZKaph1oCG1zLk48xcTTAyfifXH7Nr_Pli93D_PrZVZjXgyZrbxnj6rgYsvGWQJSyG5rtfaOFBVQFjYHBDKQGyS7URvn2aKuwFCJeiIu_3oDM6-7ftzRf68PL-hfAT1Q7w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Parallelizing multiclass Support Vector Machines for scalable image annotation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Alham, N. K. ; Maozhen Li ; Yang Liu ; Hammoud, S.</creator><creatorcontrib>Alham, N. K. ; Maozhen Li ; Yang Liu ; Hammoud, S.</creatorcontrib><description>Machine learning techniques have facilitated image retrieval by automatically classifying and annotating images with keywords. Among them Support Vector Machines (SVMs) are used extensively due to their generalization properties. SVM was initially designed for binary classifications. However, most classification problems arising in domains such as image annotation usually involve more than two classes. Notably SVM training is a computationally intensive process especially when the training dataset is large. This paper presents MRMSVM, a distributed multiclass SVM algorithm for large scale image annotation which partitions the training dataset into smaller binary chunks and train SVM in parallel using a cluster of computers. MRMSVM is evaluated in an experimental environment showing that the distributed Multiclass SVM algorithm reduces the training time significantly while maintaining a high level of accuracy in classifications.</description><identifier>ISBN: 9781612841809</identifier><identifier>ISBN: 1612841805</identifier><identifier>EISBN: 9781612841816</identifier><identifier>EISBN: 1612841813</identifier><identifier>EISBN: 1612841791</identifier><identifier>EISBN: 9781612841793</identifier><identifier>DOI: 10.1109/FSKD.2011.6020073</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Algorithm design and analysis ; Classification algorithms ; Clustering algorithms ; distributed SVM ; image annotation ; machine learning ; MapReduce ; Multiclass SVM ; Optimization ; Support vector machines ; Training</subject><ispartof>2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), 2011, Vol.4, p.2691-2694</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6020073$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6020073$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Alham, N. K.</creatorcontrib><creatorcontrib>Maozhen Li</creatorcontrib><creatorcontrib>Yang Liu</creatorcontrib><creatorcontrib>Hammoud, S.</creatorcontrib><title>Parallelizing multiclass Support Vector Machines for scalable image annotation</title><title>2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)</title><addtitle>FSKD</addtitle><description>Machine learning techniques have facilitated image retrieval by automatically classifying and annotating images with keywords. Among them Support Vector Machines (SVMs) are used extensively due to their generalization properties. SVM was initially designed for binary classifications. However, most classification problems arising in domains such as image annotation usually involve more than two classes. Notably SVM training is a computationally intensive process especially when the training dataset is large. This paper presents MRMSVM, a distributed multiclass SVM algorithm for large scale image annotation which partitions the training dataset into smaller binary chunks and train SVM in parallel using a cluster of computers. MRMSVM is evaluated in an experimental environment showing that the distributed Multiclass SVM algorithm reduces the training time significantly while maintaining a high level of accuracy in classifications.</description><subject>Accuracy</subject><subject>Algorithm design and analysis</subject><subject>Classification algorithms</subject><subject>Clustering algorithms</subject><subject>distributed SVM</subject><subject>image annotation</subject><subject>machine learning</subject><subject>MapReduce</subject><subject>Multiclass SVM</subject><subject>Optimization</subject><subject>Support vector machines</subject><subject>Training</subject><isbn>9781612841809</isbn><isbn>1612841805</isbn><isbn>9781612841816</isbn><isbn>1612841813</isbn><isbn>1612841791</isbn><isbn>9781612841793</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1OwzAQhI0QEqj0ARAXv0DKrp3E8REVCojyIxW4Vlt3HYzcJIrTAzw9keiFuXz6LqPRCHGBMEMEe7VYPd7MFCDOSlAARh-JqTUVlqiqHEce_3Owp2Ka0heMKUurTXUmnl-ppxg5hp_Q1HK3j0NwkVKSq33Xtf0gP9gNbS-fyH2GhpP0oyRHkTaRZdhRzZKaph1oCG1zLk48xcTTAyfifXH7Nr_Pli93D_PrZVZjXgyZrbxnj6rgYsvGWQJSyG5rtfaOFBVQFjYHBDKQGyS7URvn2aKuwFCJeiIu_3oDM6-7ftzRf68PL-hfAT1Q7w</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Alham, N. K.</creator><creator>Maozhen Li</creator><creator>Yang Liu</creator><creator>Hammoud, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201107</creationdate><title>Parallelizing multiclass Support Vector Machines for scalable image annotation</title><author>Alham, N. K. ; Maozhen Li ; Yang Liu ; Hammoud, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g145t-98ffef125e5de7c9a0a21ecd933fca2a506594010a70471a9b2bcfe913807a613</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accuracy</topic><topic>Algorithm design and analysis</topic><topic>Classification algorithms</topic><topic>Clustering algorithms</topic><topic>distributed SVM</topic><topic>image annotation</topic><topic>machine learning</topic><topic>MapReduce</topic><topic>Multiclass SVM</topic><topic>Optimization</topic><topic>Support vector machines</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Alham, N. K.</creatorcontrib><creatorcontrib>Maozhen Li</creatorcontrib><creatorcontrib>Yang Liu</creatorcontrib><creatorcontrib>Hammoud, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Alham, N. K.</au><au>Maozhen Li</au><au>Yang Liu</au><au>Hammoud, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Parallelizing multiclass Support Vector Machines for scalable image annotation</atitle><btitle>2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)</btitle><stitle>FSKD</stitle><date>2011-07</date><risdate>2011</risdate><volume>4</volume><spage>2691</spage><epage>2694</epage><pages>2691-2694</pages><isbn>9781612841809</isbn><isbn>1612841805</isbn><eisbn>9781612841816</eisbn><eisbn>1612841813</eisbn><eisbn>1612841791</eisbn><eisbn>9781612841793</eisbn><abstract>Machine learning techniques have facilitated image retrieval by automatically classifying and annotating images with keywords. Among them Support Vector Machines (SVMs) are used extensively due to their generalization properties. SVM was initially designed for binary classifications. However, most classification problems arising in domains such as image annotation usually involve more than two classes. Notably SVM training is a computationally intensive process especially when the training dataset is large. This paper presents MRMSVM, a distributed multiclass SVM algorithm for large scale image annotation which partitions the training dataset into smaller binary chunks and train SVM in parallel using a cluster of computers. MRMSVM is evaluated in an experimental environment showing that the distributed Multiclass SVM algorithm reduces the training time significantly while maintaining a high level of accuracy in classifications.</abstract><pub>IEEE</pub><doi>10.1109/FSKD.2011.6020073</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781612841809 |
ispartof | 2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), 2011, Vol.4, p.2691-2694 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6020073 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy Algorithm design and analysis Classification algorithms Clustering algorithms distributed SVM image annotation machine learning MapReduce Multiclass SVM Optimization Support vector machines Training |
title | Parallelizing multiclass Support Vector Machines for scalable image annotation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T05%3A50%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Parallelizing%20multiclass%20Support%20Vector%20Machines%20for%20scalable%20image%20annotation&rft.btitle=2011%20Eighth%20International%20Conference%20on%20Fuzzy%20Systems%20and%20Knowledge%20Discovery%20(FSKD)&rft.au=Alham,%20N.%20K.&rft.date=2011-07&rft.volume=4&rft.spage=2691&rft.epage=2694&rft.pages=2691-2694&rft.isbn=9781612841809&rft.isbn_list=1612841805&rft_id=info:doi/10.1109/FSKD.2011.6020073&rft_dat=%3Cieee_6IE%3E6020073%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781612841816&rft.eisbn_list=1612841813&rft.eisbn_list=1612841791&rft.eisbn_list=9781612841793&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6020073&rfr_iscdi=true |