The mathematical model based on the battle of Berlin

During the First World War, F. W. Lanchester proposed several immature mathematics models for the first time to describe the aerial tactics. After that, the researchers gradually extend the model to the field of the single battle to the whole campaign. Based on the battle cases data during the Secon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhang Jiuyong, Xu Chuanqing, Gong Lei, Dehui Yuan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2136
container_issue
container_start_page 2133
container_title
container_volume 4
creator Zhang Jiuyong
Xu Chuanqing
Gong Lei
Dehui Yuan
description During the First World War, F. W. Lanchester proposed several immature mathematics models for the first time to describe the aerial tactics. After that, the researchers gradually extend the model to the field of the single battle to the whole campaign. Based on the battle cases data during the Second World War, we put forward a mathematic combat model about the ammunition consumption and arms of services in joining battle of Berlin battle and try to simulate the battlefield of war in the case of the typical conditions of mechanized war. And finding a good way to solve the problem that how to distribute the martial material, which may do help to the military commanders to make military decision with lest time.
doi_str_mv 10.1109/FSKD.2011.6020037
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6020037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6020037</ieee_id><sourcerecordid>6020037</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-2833dc3b68a063ddc515b64b18318ddf7488d9d1d3dfcecf63cf7f68c401d0ef3</originalsourceid><addsrcrecordid>eNpVj0FLw0AUhFdEUGp-gHjZP5D4Xl662T1qtVUseDD3stn3lkaSRpJc_Pcu2ItzmOFjYGCUukMoEME9bD_fn4sSEAsDJQDVFypztUWDpa0w5eU_Bnetsnn-giRjHNX2RlXNUfTgl6Mk64Lv9TCy9Lr1s7AeTzo1CZalFz1G_SRT351u1VX0_SzZOVeq2b40m9d8_7F72zzu887BkpeWiAO1xnowxBzWuG5N1aIltMyxrqxlx8jEMUiIhkKso7GhAmSQSCt1_zfbicjhe-oGP_0czlfpF8uGRk8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The mathematical model based on the battle of Berlin</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhang Jiuyong ; Xu Chuanqing ; Gong Lei ; Dehui Yuan</creator><creatorcontrib>Zhang Jiuyong ; Xu Chuanqing ; Gong Lei ; Dehui Yuan</creatorcontrib><description>During the First World War, F. W. Lanchester proposed several immature mathematics models for the first time to describe the aerial tactics. After that, the researchers gradually extend the model to the field of the single battle to the whole campaign. Based on the battle cases data during the Second World War, we put forward a mathematic combat model about the ammunition consumption and arms of services in joining battle of Berlin battle and try to simulate the battlefield of war in the case of the typical conditions of mechanized war. And finding a good way to solve the problem that how to distribute the martial material, which may do help to the military commanders to make military decision with lest time.</description><identifier>ISBN: 9781612841809</identifier><identifier>ISBN: 1612841805</identifier><identifier>EISBN: 9781612841816</identifier><identifier>EISBN: 1612841813</identifier><identifier>EISBN: 1612841791</identifier><identifier>EISBN: 9781612841793</identifier><identifier>DOI: 10.1109/FSKD.2011.6020037</identifier><language>eng</language><publisher>IEEE</publisher><subject>Berlin Battle ; Equations ; Logistics ; material distributing ; Mathematical model ; mathematical modeling ; Military aircraft ; Transportation ; Weapons</subject><ispartof>2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), 2011, Vol.4, p.2133-2136</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6020037$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6020037$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang Jiuyong</creatorcontrib><creatorcontrib>Xu Chuanqing</creatorcontrib><creatorcontrib>Gong Lei</creatorcontrib><creatorcontrib>Dehui Yuan</creatorcontrib><title>The mathematical model based on the battle of Berlin</title><title>2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)</title><addtitle>FSKD</addtitle><description>During the First World War, F. W. Lanchester proposed several immature mathematics models for the first time to describe the aerial tactics. After that, the researchers gradually extend the model to the field of the single battle to the whole campaign. Based on the battle cases data during the Second World War, we put forward a mathematic combat model about the ammunition consumption and arms of services in joining battle of Berlin battle and try to simulate the battlefield of war in the case of the typical conditions of mechanized war. And finding a good way to solve the problem that how to distribute the martial material, which may do help to the military commanders to make military decision with lest time.</description><subject>Berlin Battle</subject><subject>Equations</subject><subject>Logistics</subject><subject>material distributing</subject><subject>Mathematical model</subject><subject>mathematical modeling</subject><subject>Military aircraft</subject><subject>Transportation</subject><subject>Weapons</subject><isbn>9781612841809</isbn><isbn>1612841805</isbn><isbn>9781612841816</isbn><isbn>1612841813</isbn><isbn>1612841791</isbn><isbn>9781612841793</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj0FLw0AUhFdEUGp-gHjZP5D4Xl662T1qtVUseDD3stn3lkaSRpJc_Pcu2ItzmOFjYGCUukMoEME9bD_fn4sSEAsDJQDVFypztUWDpa0w5eU_Bnetsnn-giRjHNX2RlXNUfTgl6Mk64Lv9TCy9Lr1s7AeTzo1CZalFz1G_SRT351u1VX0_SzZOVeq2b40m9d8_7F72zzu887BkpeWiAO1xnowxBzWuG5N1aIltMyxrqxlx8jEMUiIhkKso7GhAmSQSCt1_zfbicjhe-oGP_0czlfpF8uGRk8</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Zhang Jiuyong</creator><creator>Xu Chuanqing</creator><creator>Gong Lei</creator><creator>Dehui Yuan</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201107</creationdate><title>The mathematical model based on the battle of Berlin</title><author>Zhang Jiuyong ; Xu Chuanqing ; Gong Lei ; Dehui Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-2833dc3b68a063ddc515b64b18318ddf7488d9d1d3dfcecf63cf7f68c401d0ef3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Berlin Battle</topic><topic>Equations</topic><topic>Logistics</topic><topic>material distributing</topic><topic>Mathematical model</topic><topic>mathematical modeling</topic><topic>Military aircraft</topic><topic>Transportation</topic><topic>Weapons</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang Jiuyong</creatorcontrib><creatorcontrib>Xu Chuanqing</creatorcontrib><creatorcontrib>Gong Lei</creatorcontrib><creatorcontrib>Dehui Yuan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang Jiuyong</au><au>Xu Chuanqing</au><au>Gong Lei</au><au>Dehui Yuan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The mathematical model based on the battle of Berlin</atitle><btitle>2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)</btitle><stitle>FSKD</stitle><date>2011-07</date><risdate>2011</risdate><volume>4</volume><spage>2133</spage><epage>2136</epage><pages>2133-2136</pages><isbn>9781612841809</isbn><isbn>1612841805</isbn><eisbn>9781612841816</eisbn><eisbn>1612841813</eisbn><eisbn>1612841791</eisbn><eisbn>9781612841793</eisbn><abstract>During the First World War, F. W. Lanchester proposed several immature mathematics models for the first time to describe the aerial tactics. After that, the researchers gradually extend the model to the field of the single battle to the whole campaign. Based on the battle cases data during the Second World War, we put forward a mathematic combat model about the ammunition consumption and arms of services in joining battle of Berlin battle and try to simulate the battlefield of war in the case of the typical conditions of mechanized war. And finding a good way to solve the problem that how to distribute the martial material, which may do help to the military commanders to make military decision with lest time.</abstract><pub>IEEE</pub><doi>10.1109/FSKD.2011.6020037</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781612841809
ispartof 2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), 2011, Vol.4, p.2133-2136
issn
language eng
recordid cdi_ieee_primary_6020037
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Berlin Battle
Equations
Logistics
material distributing
Mathematical model
mathematical modeling
Military aircraft
Transportation
Weapons
title The mathematical model based on the battle of Berlin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A24%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20mathematical%20model%20based%20on%20the%20battle%20of%20Berlin&rft.btitle=2011%20Eighth%20International%20Conference%20on%20Fuzzy%20Systems%20and%20Knowledge%20Discovery%20(FSKD)&rft.au=Zhang%20Jiuyong&rft.date=2011-07&rft.volume=4&rft.spage=2133&rft.epage=2136&rft.pages=2133-2136&rft.isbn=9781612841809&rft.isbn_list=1612841805&rft_id=info:doi/10.1109/FSKD.2011.6020037&rft_dat=%3Cieee_6IE%3E6020037%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781612841816&rft.eisbn_list=1612841813&rft.eisbn_list=1612841791&rft.eisbn_list=9781612841793&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6020037&rfr_iscdi=true