Semi-supervised geometric mean of Kullback-Leibler divergences for subspace selection

Subspace selection is widely adopted in many areas of pattern recognition. A recent result, named maximizing the geometric mean of Kullback-Leibler (KL) divergences of class pairs (MGMD), is a successful method for subspace selection, which can significantly reduce the class separation problem. Howe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Si-Bao Chen, Hai-Xian Wang, Xing-Yi Zhang, Bin Luo
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!