Semi-supervised geometric mean of Kullback-Leibler divergences for subspace selection
Subspace selection is widely adopted in many areas of pattern recognition. A recent result, named maximizing the geometric mean of Kullback-Leibler (KL) divergences of class pairs (MGMD), is a successful method for subspace selection, which can significantly reduce the class separation problem. Howe...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!