NiGe Contacts and Junction Architectures for P and As Doped Germanium Devices
In this paper, the contact resistivity of NiGe on n-doped Ge is extracted. Although phosphorus is the slowest n-type dopant in terms of diffusion in Ge, the corresponding contact resistivity data for this dopant are sparse. Contact resistivity dependence on implant dose will be determined, as well a...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2011-11, Vol.58 (11), p.3801-3807 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3807 |
---|---|
container_issue | 11 |
container_start_page | 3801 |
container_title | IEEE transactions on electron devices |
container_volume | 58 |
creator | Shayesteh, M. Daunt, Chris L. L. M. O'Connell, D. Djara, V. White, M. Long, B. Duffy, Ray |
description | In this paper, the contact resistivity of NiGe on n-doped Ge is extracted. Although phosphorus is the slowest n-type dopant in terms of diffusion in Ge, the corresponding contact resistivity data for this dopant are sparse. Contact resistivity dependence on implant dose will be determined, as well as a comparison of phosphorus- and arsenic-doped Ge layers. The impact of high contact resistance is evaluated for future technology n-type metal-oxide-semiconductor germanium devices. |
doi_str_mv | 10.1109/TED.2011.2164801 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6016232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6016232</ieee_id><sourcerecordid>1349420199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-94b937dbd4b34e3fd5bda1112dd94a77963b36a355fe310d3d6c53614aade5c43</originalsourceid><addsrcrecordid>eNpdkE1rGzEQhkVpIG6Se6AXUQjkso5m9bGro7EdtyVJe3DOQivNUhl715F2A_n3kWOTQ0_DMM_7MjyEXAObAjB9t14upiUDmJagRM3gC5mAlFWhlVBfyYQxqAvNa35OvqW0yasSopyQx6ewQjrvu8G6IVHbefp77NwQ-o7OovsXBnTDGDHRto_07wcwS3TR79HTFcad7cK4owt8DQ7TJTlr7Tbh1WlekOf75Xr-s3j4s_o1nz0UToAeCi0azSvfeNFwgbz1svEWAErvtbBVpRVvuLJcyhY5MM-9cpIrENZ6lE7wC3J77N3H_mXENJhdSA63W9thPyYDXGiRbWid0R__oZt-jF3-zmjGmKxlXWaIHSEX-5QitmYfw87GNwPMHPSarNcc9JqT3hy5OfXa5Oy2jbZzIX3mSlFVChTL3PcjFxDx86yy_5KX_B2hjoEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>900058582</pqid></control><display><type>article</type><title>NiGe Contacts and Junction Architectures for P and As Doped Germanium Devices</title><source>IEEE Electronic Library (IEL)</source><creator>Shayesteh, M. ; Daunt, Chris L. L. M. ; O'Connell, D. ; Djara, V. ; White, M. ; Long, B. ; Duffy, Ray</creator><creatorcontrib>Shayesteh, M. ; Daunt, Chris L. L. M. ; O'Connell, D. ; Djara, V. ; White, M. ; Long, B. ; Duffy, Ray</creatorcontrib><description>In this paper, the contact resistivity of NiGe on n-doped Ge is extracted. Although phosphorus is the slowest n-type dopant in terms of diffusion in Ge, the corresponding contact resistivity data for this dopant are sparse. Contact resistivity dependence on implant dose will be determined, as well as a comparison of phosphorus- and arsenic-doped Ge layers. The impact of high contact resistance is evaluated for future technology n-type metal-oxide-semiconductor germanium devices.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2011.2164801</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Annealing ; Applied sciences ; Compound structure devices ; Conductivity ; Contact resistance ; Devices ; Diffusion ; dopant activation ; Dopants ; Electrical resistivity ; Electronics ; Exact sciences and technology ; Germanium ; Implants ; Interfaces ; Materials ; Metals ; Phosphorus ; Resistance ; Scanning electron microscopy ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; sheet resistance ; transfer length method (TLM)</subject><ispartof>IEEE transactions on electron devices, 2011-11, Vol.58 (11), p.3801-3807</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-94b937dbd4b34e3fd5bda1112dd94a77963b36a355fe310d3d6c53614aade5c43</citedby><cites>FETCH-LOGICAL-c419t-94b937dbd4b34e3fd5bda1112dd94a77963b36a355fe310d3d6c53614aade5c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6016232$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6016232$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24776160$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shayesteh, M.</creatorcontrib><creatorcontrib>Daunt, Chris L. L. M.</creatorcontrib><creatorcontrib>O'Connell, D.</creatorcontrib><creatorcontrib>Djara, V.</creatorcontrib><creatorcontrib>White, M.</creatorcontrib><creatorcontrib>Long, B.</creatorcontrib><creatorcontrib>Duffy, Ray</creatorcontrib><title>NiGe Contacts and Junction Architectures for P and As Doped Germanium Devices</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>In this paper, the contact resistivity of NiGe on n-doped Ge is extracted. Although phosphorus is the slowest n-type dopant in terms of diffusion in Ge, the corresponding contact resistivity data for this dopant are sparse. Contact resistivity dependence on implant dose will be determined, as well as a comparison of phosphorus- and arsenic-doped Ge layers. The impact of high contact resistance is evaluated for future technology n-type metal-oxide-semiconductor germanium devices.</description><subject>Annealing</subject><subject>Applied sciences</subject><subject>Compound structure devices</subject><subject>Conductivity</subject><subject>Contact resistance</subject><subject>Devices</subject><subject>Diffusion</subject><subject>dopant activation</subject><subject>Dopants</subject><subject>Electrical resistivity</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Germanium</subject><subject>Implants</subject><subject>Interfaces</subject><subject>Materials</subject><subject>Metals</subject><subject>Phosphorus</subject><subject>Resistance</subject><subject>Scanning electron microscopy</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>sheet resistance</subject><subject>transfer length method (TLM)</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1rGzEQhkVpIG6Se6AXUQjkso5m9bGro7EdtyVJe3DOQivNUhl715F2A_n3kWOTQ0_DMM_7MjyEXAObAjB9t14upiUDmJagRM3gC5mAlFWhlVBfyYQxqAvNa35OvqW0yasSopyQx6ewQjrvu8G6IVHbefp77NwQ-o7OovsXBnTDGDHRto_07wcwS3TR79HTFcad7cK4owt8DQ7TJTlr7Tbh1WlekOf75Xr-s3j4s_o1nz0UToAeCi0azSvfeNFwgbz1svEWAErvtbBVpRVvuLJcyhY5MM-9cpIrENZ6lE7wC3J77N3H_mXENJhdSA63W9thPyYDXGiRbWid0R__oZt-jF3-zmjGmKxlXWaIHSEX-5QitmYfw87GNwPMHPSarNcc9JqT3hy5OfXa5Oy2jbZzIX3mSlFVChTL3PcjFxDx86yy_5KX_B2hjoEA</recordid><startdate>20111101</startdate><enddate>20111101</enddate><creator>Shayesteh, M.</creator><creator>Daunt, Chris L. L. M.</creator><creator>O'Connell, D.</creator><creator>Djara, V.</creator><creator>White, M.</creator><creator>Long, B.</creator><creator>Duffy, Ray</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20111101</creationdate><title>NiGe Contacts and Junction Architectures for P and As Doped Germanium Devices</title><author>Shayesteh, M. ; Daunt, Chris L. L. M. ; O'Connell, D. ; Djara, V. ; White, M. ; Long, B. ; Duffy, Ray</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-94b937dbd4b34e3fd5bda1112dd94a77963b36a355fe310d3d6c53614aade5c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Annealing</topic><topic>Applied sciences</topic><topic>Compound structure devices</topic><topic>Conductivity</topic><topic>Contact resistance</topic><topic>Devices</topic><topic>Diffusion</topic><topic>dopant activation</topic><topic>Dopants</topic><topic>Electrical resistivity</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Germanium</topic><topic>Implants</topic><topic>Interfaces</topic><topic>Materials</topic><topic>Metals</topic><topic>Phosphorus</topic><topic>Resistance</topic><topic>Scanning electron microscopy</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>sheet resistance</topic><topic>transfer length method (TLM)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shayesteh, M.</creatorcontrib><creatorcontrib>Daunt, Chris L. L. M.</creatorcontrib><creatorcontrib>O'Connell, D.</creatorcontrib><creatorcontrib>Djara, V.</creatorcontrib><creatorcontrib>White, M.</creatorcontrib><creatorcontrib>Long, B.</creatorcontrib><creatorcontrib>Duffy, Ray</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shayesteh, M.</au><au>Daunt, Chris L. L. M.</au><au>O'Connell, D.</au><au>Djara, V.</au><au>White, M.</au><au>Long, B.</au><au>Duffy, Ray</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>NiGe Contacts and Junction Architectures for P and As Doped Germanium Devices</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2011-11-01</date><risdate>2011</risdate><volume>58</volume><issue>11</issue><spage>3801</spage><epage>3807</epage><pages>3801-3807</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>In this paper, the contact resistivity of NiGe on n-doped Ge is extracted. Although phosphorus is the slowest n-type dopant in terms of diffusion in Ge, the corresponding contact resistivity data for this dopant are sparse. Contact resistivity dependence on implant dose will be determined, as well as a comparison of phosphorus- and arsenic-doped Ge layers. The impact of high contact resistance is evaluated for future technology n-type metal-oxide-semiconductor germanium devices.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TED.2011.2164801</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2011-11, Vol.58 (11), p.3801-3807 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_ieee_primary_6016232 |
source | IEEE Electronic Library (IEL) |
subjects | Annealing Applied sciences Compound structure devices Conductivity Contact resistance Devices Diffusion dopant activation Dopants Electrical resistivity Electronics Exact sciences and technology Germanium Implants Interfaces Materials Metals Phosphorus Resistance Scanning electron microscopy Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices sheet resistance transfer length method (TLM) |
title | NiGe Contacts and Junction Architectures for P and As Doped Germanium Devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A42%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=NiGe%20Contacts%20and%20Junction%20Architectures%20for%20P%20and%20As%20Doped%20Germanium%20Devices&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Shayesteh,%20M.&rft.date=2011-11-01&rft.volume=58&rft.issue=11&rft.spage=3801&rft.epage=3807&rft.pages=3801-3807&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2011.2164801&rft_dat=%3Cproquest_RIE%3E1349420199%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=900058582&rft_id=info:pmid/&rft_ieee_id=6016232&rfr_iscdi=true |