Emergency vehicle location model and algorithm under uncertainty

Uncertainty is an important feature in the emergency incident management. The emergency event may happen at anytime and anyplace. Based on Laplace criterion, it is supposed that the probabilities of emergency events occurring at any point of the way are the same. Emergency vehicles deal with the eme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Qing Ye, Jianshe Song, Zhenglei Yang, Lianfeng Wang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Qing Ye
Jianshe Song
Zhenglei Yang
Lianfeng Wang
description Uncertainty is an important feature in the emergency incident management. The emergency event may happen at anytime and anyplace. Based on Laplace criterion, it is supposed that the probabilities of emergency events occurring at any point of the way are the same. Emergency vehicles deal with the emergency events through the road network. Emergency vehicle location models aiming to a maximum coverage of the target, and demand at any point in the road network are established. According to the characteristics of the design model, the integration of genetic algorithm and tabu search for solving the problem is improved. Finally, a numerical example illustrates the affectivity of the model and algorithm, which can be used in the location of the ambulance and police wagon.
doi_str_mv 10.1109/ICEMMS.2011.6015604
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6015604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6015604</ieee_id><sourcerecordid>6015604</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-fda752a3ca7dd53e3ffdc0b9ac2837ac2bfcd8636bd7da4989f9577f1503976c3</originalsourceid><addsrcrecordid>eNo1j8tKw0AYhUekoLZ5gm7mBRJnMvedEqIWWlzYfZnM_NOO5CKTKOTtDVjP4jt8mwMHoS0lBaXEPO6q-nD4KEpCaSEJFZLwG5QZpSkvOTdScn2LHv5FmDuUjeMnWSKlKbW4R091B-kMvZvxD1yiawG3g7NTHHrcDR5abHuPbXseUpwuHf7uPaSFDtJkYz_NG7QKth0hu_YaHV_qY_WW799fd9XzPo-GTHnwVonSMmeV94IBC8E70hjrSs3UwiY4ryWTjVfecqNNMEKpQAVhRknH1mj7NxsB4PSVYmfTfLp-Zr_VAkxQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Emergency vehicle location model and algorithm under uncertainty</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Qing Ye ; Jianshe Song ; Zhenglei Yang ; Lianfeng Wang</creator><creatorcontrib>Qing Ye ; Jianshe Song ; Zhenglei Yang ; Lianfeng Wang</creatorcontrib><description>Uncertainty is an important feature in the emergency incident management. The emergency event may happen at anytime and anyplace. Based on Laplace criterion, it is supposed that the probabilities of emergency events occurring at any point of the way are the same. Emergency vehicles deal with the emergency events through the road network. Emergency vehicle location models aiming to a maximum coverage of the target, and demand at any point in the road network are established. According to the characteristics of the design model, the integration of genetic algorithm and tabu search for solving the problem is improved. Finally, a numerical example illustrates the affectivity of the model and algorithm, which can be used in the location of the ambulance and police wagon.</description><identifier>ISBN: 1424496659</identifier><identifier>ISBN: 9781424496655</identifier><identifier>EISBN: 9781424496648</identifier><identifier>EISBN: 9781424496662</identifier><identifier>EISBN: 1424496640</identifier><identifier>EISBN: 1424496667</identifier><identifier>DOI: 10.1109/ICEMMS.2011.6015604</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; emergency systems ; general absolute center ; Genetic algorithms ; network location ; Numerical models ; Roads ; Search problems ; Uncertainty ; Vehicles</subject><ispartof>2011 2nd IEEE International Conference on Emergency Management and Management Sciences, 2011, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6015604$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6015604$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qing Ye</creatorcontrib><creatorcontrib>Jianshe Song</creatorcontrib><creatorcontrib>Zhenglei Yang</creatorcontrib><creatorcontrib>Lianfeng Wang</creatorcontrib><title>Emergency vehicle location model and algorithm under uncertainty</title><title>2011 2nd IEEE International Conference on Emergency Management and Management Sciences</title><addtitle>ICEMMS</addtitle><description>Uncertainty is an important feature in the emergency incident management. The emergency event may happen at anytime and anyplace. Based on Laplace criterion, it is supposed that the probabilities of emergency events occurring at any point of the way are the same. Emergency vehicles deal with the emergency events through the road network. Emergency vehicle location models aiming to a maximum coverage of the target, and demand at any point in the road network are established. According to the characteristics of the design model, the integration of genetic algorithm and tabu search for solving the problem is improved. Finally, a numerical example illustrates the affectivity of the model and algorithm, which can be used in the location of the ambulance and police wagon.</description><subject>Algorithm design and analysis</subject><subject>emergency systems</subject><subject>general absolute center</subject><subject>Genetic algorithms</subject><subject>network location</subject><subject>Numerical models</subject><subject>Roads</subject><subject>Search problems</subject><subject>Uncertainty</subject><subject>Vehicles</subject><isbn>1424496659</isbn><isbn>9781424496655</isbn><isbn>9781424496648</isbn><isbn>9781424496662</isbn><isbn>1424496640</isbn><isbn>1424496667</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j8tKw0AYhUekoLZ5gm7mBRJnMvedEqIWWlzYfZnM_NOO5CKTKOTtDVjP4jt8mwMHoS0lBaXEPO6q-nD4KEpCaSEJFZLwG5QZpSkvOTdScn2LHv5FmDuUjeMnWSKlKbW4R091B-kMvZvxD1yiawG3g7NTHHrcDR5abHuPbXseUpwuHf7uPaSFDtJkYz_NG7QKth0hu_YaHV_qY_WW799fd9XzPo-GTHnwVonSMmeV94IBC8E70hjrSs3UwiY4ryWTjVfecqNNMEKpQAVhRknH1mj7NxsB4PSVYmfTfLp-Zr_VAkxQ</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>Qing Ye</creator><creator>Jianshe Song</creator><creator>Zhenglei Yang</creator><creator>Lianfeng Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201108</creationdate><title>Emergency vehicle location model and algorithm under uncertainty</title><author>Qing Ye ; Jianshe Song ; Zhenglei Yang ; Lianfeng Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-fda752a3ca7dd53e3ffdc0b9ac2837ac2bfcd8636bd7da4989f9577f1503976c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algorithm design and analysis</topic><topic>emergency systems</topic><topic>general absolute center</topic><topic>Genetic algorithms</topic><topic>network location</topic><topic>Numerical models</topic><topic>Roads</topic><topic>Search problems</topic><topic>Uncertainty</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Qing Ye</creatorcontrib><creatorcontrib>Jianshe Song</creatorcontrib><creatorcontrib>Zhenglei Yang</creatorcontrib><creatorcontrib>Lianfeng Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qing Ye</au><au>Jianshe Song</au><au>Zhenglei Yang</au><au>Lianfeng Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Emergency vehicle location model and algorithm under uncertainty</atitle><btitle>2011 2nd IEEE International Conference on Emergency Management and Management Sciences</btitle><stitle>ICEMMS</stitle><date>2011-08</date><risdate>2011</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><isbn>1424496659</isbn><isbn>9781424496655</isbn><eisbn>9781424496648</eisbn><eisbn>9781424496662</eisbn><eisbn>1424496640</eisbn><eisbn>1424496667</eisbn><abstract>Uncertainty is an important feature in the emergency incident management. The emergency event may happen at anytime and anyplace. Based on Laplace criterion, it is supposed that the probabilities of emergency events occurring at any point of the way are the same. Emergency vehicles deal with the emergency events through the road network. Emergency vehicle location models aiming to a maximum coverage of the target, and demand at any point in the road network are established. According to the characteristics of the design model, the integration of genetic algorithm and tabu search for solving the problem is improved. Finally, a numerical example illustrates the affectivity of the model and algorithm, which can be used in the location of the ambulance and police wagon.</abstract><pub>IEEE</pub><doi>10.1109/ICEMMS.2011.6015604</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424496659
ispartof 2011 2nd IEEE International Conference on Emergency Management and Management Sciences, 2011, p.1-4
issn
language eng
recordid cdi_ieee_primary_6015604
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
emergency systems
general absolute center
Genetic algorithms
network location
Numerical models
Roads
Search problems
Uncertainty
Vehicles
title Emergency vehicle location model and algorithm under uncertainty
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A32%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Emergency%20vehicle%20location%20model%20and%20algorithm%20under%20uncertainty&rft.btitle=2011%202nd%20IEEE%20International%20Conference%20on%20Emergency%20Management%20and%20Management%20Sciences&rft.au=Qing%20Ye&rft.date=2011-08&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.isbn=1424496659&rft.isbn_list=9781424496655&rft_id=info:doi/10.1109/ICEMMS.2011.6015604&rft_dat=%3Cieee_6IE%3E6015604%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424496648&rft.eisbn_list=9781424496662&rft.eisbn_list=1424496640&rft.eisbn_list=1424496667&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6015604&rfr_iscdi=true