Improving temporal error concealment by GRNN in video communication

This work aims to improve the temporal error concealment for the corrupted macroblocks whose motions are not locally-smooth. It is demonstrated that the recovered quality by the oft-used motion estimation approaches is not visually satisfied for those MBs of which adjacent MBs do not have a consiste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jun-Horng Chen, Shih-Chun Shao, Wen-Hui Chen
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Jun-Horng Chen
Shih-Chun Shao
Wen-Hui Chen
description This work aims to improve the temporal error concealment for the corrupted macroblocks whose motions are not locally-smooth. It is demonstrated that the recovered quality by the oft-used motion estimation approaches is not visually satisfied for those MBs of which adjacent MBs do not have a consistent movement. Therefore, this work will propose and demonstrate that, if the conventional error concealment approach is followed by the nonparametric regression approach GRNN, the concealed quality will be raised. The simulation results will show the proposed approach indeed improves the performance of error concealment and the improving gain is about 1 dB of PSNR.
doi_str_mv 10.1109/ICME.2011.6012058
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6012058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6012058</ieee_id><sourcerecordid>6012058</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-e7f3763eebf0ca629c593f5ffd4f0c2329753d0b096976f0518076ab43677a693</originalsourceid><addsrcrecordid>eNo9kF1LwzAYheMXOOd-gHiTP9D6pvm-lLLNwpwgCt6NtE0k0qQlq4P9ewuOnZsHzgPn4iD0QCAnBPRTVb4u8wIIyQWQAri6QHdEkEIxykFcohnRjGdSqa-rs2CKXZ-FJLdosd__wBTJmAY6Q2UVhtQffPzGow1Dn0yHbUp9wk0fG2u6YOOI6yNev2-32Ed88K3tJxnCb_SNGX0f79GNM93eLk6co8_V8qN8yTZv66p83mSeSD5mVjoqBbW2dtAYUeiGa-q4cy2bioIWWnLaQg1aaCkccKJAClMzKqQ0QtM5evzf9dba3ZB8MOm4O51B_wCEmk4_</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Improving temporal error concealment by GRNN in video communication</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jun-Horng Chen ; Shih-Chun Shao ; Wen-Hui Chen</creator><creatorcontrib>Jun-Horng Chen ; Shih-Chun Shao ; Wen-Hui Chen</creatorcontrib><description>This work aims to improve the temporal error concealment for the corrupted macroblocks whose motions are not locally-smooth. It is demonstrated that the recovered quality by the oft-used motion estimation approaches is not visually satisfied for those MBs of which adjacent MBs do not have a consistent movement. Therefore, this work will propose and demonstrate that, if the conventional error concealment approach is followed by the nonparametric regression approach GRNN, the concealed quality will be raised. The simulation results will show the proposed approach indeed improves the performance of error concealment and the improving gain is about 1 dB of PSNR.</description><identifier>ISSN: 1945-7871</identifier><identifier>ISBN: 1612843484</identifier><identifier>ISBN: 9781612843483</identifier><identifier>EISSN: 1945-788X</identifier><identifier>EISBN: 1612843506</identifier><identifier>EISBN: 9781612843490</identifier><identifier>EISBN: 9781612843506</identifier><identifier>EISBN: 1612843492</identifier><identifier>DOI: 10.1109/ICME.2011.6012058</identifier><language>eng</language><publisher>IEEE</publisher><subject>error concealment ; Estimation ; general regression neural network ; Joints ; Probabilistic logic ; PSNR ; Simulation ; Training ; Visualization</subject><ispartof>2011 IEEE International Conference on Multimedia and Expo, 2011, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6012058$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6012058$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jun-Horng Chen</creatorcontrib><creatorcontrib>Shih-Chun Shao</creatorcontrib><creatorcontrib>Wen-Hui Chen</creatorcontrib><title>Improving temporal error concealment by GRNN in video communication</title><title>2011 IEEE International Conference on Multimedia and Expo</title><addtitle>ICME</addtitle><description>This work aims to improve the temporal error concealment for the corrupted macroblocks whose motions are not locally-smooth. It is demonstrated that the recovered quality by the oft-used motion estimation approaches is not visually satisfied for those MBs of which adjacent MBs do not have a consistent movement. Therefore, this work will propose and demonstrate that, if the conventional error concealment approach is followed by the nonparametric regression approach GRNN, the concealed quality will be raised. The simulation results will show the proposed approach indeed improves the performance of error concealment and the improving gain is about 1 dB of PSNR.</description><subject>error concealment</subject><subject>Estimation</subject><subject>general regression neural network</subject><subject>Joints</subject><subject>Probabilistic logic</subject><subject>PSNR</subject><subject>Simulation</subject><subject>Training</subject><subject>Visualization</subject><issn>1945-7871</issn><issn>1945-788X</issn><isbn>1612843484</isbn><isbn>9781612843483</isbn><isbn>1612843506</isbn><isbn>9781612843490</isbn><isbn>9781612843506</isbn><isbn>1612843492</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAYheMXOOd-gHiTP9D6pvm-lLLNwpwgCt6NtE0k0qQlq4P9ewuOnZsHzgPn4iD0QCAnBPRTVb4u8wIIyQWQAri6QHdEkEIxykFcohnRjGdSqa-rs2CKXZ-FJLdosd__wBTJmAY6Q2UVhtQffPzGow1Dn0yHbUp9wk0fG2u6YOOI6yNev2-32Ed88K3tJxnCb_SNGX0f79GNM93eLk6co8_V8qN8yTZv66p83mSeSD5mVjoqBbW2dtAYUeiGa-q4cy2bioIWWnLaQg1aaCkccKJAClMzKqQ0QtM5evzf9dba3ZB8MOm4O51B_wCEmk4_</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Jun-Horng Chen</creator><creator>Shih-Chun Shao</creator><creator>Wen-Hui Chen</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201107</creationdate><title>Improving temporal error concealment by GRNN in video communication</title><author>Jun-Horng Chen ; Shih-Chun Shao ; Wen-Hui Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-e7f3763eebf0ca629c593f5ffd4f0c2329753d0b096976f0518076ab43677a693</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>error concealment</topic><topic>Estimation</topic><topic>general regression neural network</topic><topic>Joints</topic><topic>Probabilistic logic</topic><topic>PSNR</topic><topic>Simulation</topic><topic>Training</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Jun-Horng Chen</creatorcontrib><creatorcontrib>Shih-Chun Shao</creatorcontrib><creatorcontrib>Wen-Hui Chen</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jun-Horng Chen</au><au>Shih-Chun Shao</au><au>Wen-Hui Chen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improving temporal error concealment by GRNN in video communication</atitle><btitle>2011 IEEE International Conference on Multimedia and Expo</btitle><stitle>ICME</stitle><date>2011-07</date><risdate>2011</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>1945-7871</issn><eissn>1945-788X</eissn><isbn>1612843484</isbn><isbn>9781612843483</isbn><eisbn>1612843506</eisbn><eisbn>9781612843490</eisbn><eisbn>9781612843506</eisbn><eisbn>1612843492</eisbn><abstract>This work aims to improve the temporal error concealment for the corrupted macroblocks whose motions are not locally-smooth. It is demonstrated that the recovered quality by the oft-used motion estimation approaches is not visually satisfied for those MBs of which adjacent MBs do not have a consistent movement. Therefore, this work will propose and demonstrate that, if the conventional error concealment approach is followed by the nonparametric regression approach GRNN, the concealed quality will be raised. The simulation results will show the proposed approach indeed improves the performance of error concealment and the improving gain is about 1 dB of PSNR.</abstract><pub>IEEE</pub><doi>10.1109/ICME.2011.6012058</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1945-7871
ispartof 2011 IEEE International Conference on Multimedia and Expo, 2011, p.1-4
issn 1945-7871
1945-788X
language eng
recordid cdi_ieee_primary_6012058
source IEEE Electronic Library (IEL) Conference Proceedings
subjects error concealment
Estimation
general regression neural network
Joints
Probabilistic logic
PSNR
Simulation
Training
Visualization
title Improving temporal error concealment by GRNN in video communication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A48%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improving%20temporal%20error%20concealment%20by%20GRNN%20in%20video%20communication&rft.btitle=2011%20IEEE%20International%20Conference%20on%20Multimedia%20and%20Expo&rft.au=Jun-Horng%20Chen&rft.date=2011-07&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=1945-7871&rft.eissn=1945-788X&rft.isbn=1612843484&rft.isbn_list=9781612843483&rft_id=info:doi/10.1109/ICME.2011.6012058&rft_dat=%3Cieee_6IE%3E6012058%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1612843506&rft.eisbn_list=9781612843490&rft.eisbn_list=9781612843506&rft.eisbn_list=1612843492&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6012058&rfr_iscdi=true