Uniform, in-probability approximation of stochastic systems

A system approximation theory useful for modeling stochastic systems is described. The theory applies to a 'large' class of continuous-time stochastic nonlinear systems characterized by a property called approximate finite memory in probability. Approximation is with respect to the input-o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Perryman, P.C., Stubberud, A.R.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 150 vol.1
container_issue
container_start_page 146
container_title
container_volume 1
creator Perryman, P.C.
Stubberud, A.R.
description A system approximation theory useful for modeling stochastic systems is described. The theory applies to a 'large' class of continuous-time stochastic nonlinear systems characterized by a property called approximate finite memory in probability. Approximation is with respect to the input-output behavior of the system under consideration. 'Tractable' structures are proposed for system approximants along with approximation criteria and general conditions under which these structures satisfy the approximation criteria are given. The fundamental role played by these and related results in system modeling is discussed. Detailed developments of these results are provided by Perryman (see Ph.D dissertation, University of California, 1996).
doi_str_mv 10.1109/ACSSC.1996.600846
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_600846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>600846</ieee_id><sourcerecordid>600846</sourcerecordid><originalsourceid>FETCH-ieee_primary_6008463</originalsourceid><addsrcrecordid>eNp9jt8KgjAchX_0B5LyAepqD5C2OZsbXYUU3VvXMmXSQp1su8i3T6jrzs3H4ePAAdgSHBOCxeGcF0UeEyFYzDDmKZtBkBwzFiUU0zmEIuOYE84yljK-gIDgI48YFXQFoXMvPCWl6eQDOD163Rjb7ZHuo8GaSla61X5EcpjaW3fSa9Mj0yDnTf2UzusaudF51bkNLBvZOhX-uIbd9XLPb5FWSpWDncZ2LL8P6V_5ARSuO94</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Uniform, in-probability approximation of stochastic systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Perryman, P.C. ; Stubberud, A.R.</creator><creatorcontrib>Perryman, P.C. ; Stubberud, A.R.</creatorcontrib><description>A system approximation theory useful for modeling stochastic systems is described. The theory applies to a 'large' class of continuous-time stochastic nonlinear systems characterized by a property called approximate finite memory in probability. Approximation is with respect to the input-output behavior of the system under consideration. 'Tractable' structures are proposed for system approximants along with approximation criteria and general conditions under which these structures satisfy the approximation criteria are given. The fundamental role played by these and related results in system modeling is discussed. Detailed developments of these results are provided by Perryman (see Ph.D dissertation, University of California, 1996).</description><identifier>ISSN: 1058-6393</identifier><identifier>ISBN: 9780818676468</identifier><identifier>ISBN: 0818676469</identifier><identifier>EISSN: 2576-2303</identifier><identifier>DOI: 10.1109/ACSSC.1996.600846</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation methods ; Fading ; History ; Linear systems ; Mathematical model ; Modeling ; Nonlinear systems ; Stochastic processes ; Stochastic systems ; System identification</subject><ispartof>Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers, 1996, Vol.1, p.146-150 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/600846$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/600846$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Perryman, P.C.</creatorcontrib><creatorcontrib>Stubberud, A.R.</creatorcontrib><title>Uniform, in-probability approximation of stochastic systems</title><title>Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers</title><addtitle>ACSSC</addtitle><description>A system approximation theory useful for modeling stochastic systems is described. The theory applies to a 'large' class of continuous-time stochastic nonlinear systems characterized by a property called approximate finite memory in probability. Approximation is with respect to the input-output behavior of the system under consideration. 'Tractable' structures are proposed for system approximants along with approximation criteria and general conditions under which these structures satisfy the approximation criteria are given. The fundamental role played by these and related results in system modeling is discussed. Detailed developments of these results are provided by Perryman (see Ph.D dissertation, University of California, 1996).</description><subject>Approximation methods</subject><subject>Fading</subject><subject>History</subject><subject>Linear systems</subject><subject>Mathematical model</subject><subject>Modeling</subject><subject>Nonlinear systems</subject><subject>Stochastic processes</subject><subject>Stochastic systems</subject><subject>System identification</subject><issn>1058-6393</issn><issn>2576-2303</issn><isbn>9780818676468</isbn><isbn>0818676469</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1996</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9jt8KgjAchX_0B5LyAepqD5C2OZsbXYUU3VvXMmXSQp1su8i3T6jrzs3H4ePAAdgSHBOCxeGcF0UeEyFYzDDmKZtBkBwzFiUU0zmEIuOYE84yljK-gIDgI48YFXQFoXMvPCWl6eQDOD163Rjb7ZHuo8GaSla61X5EcpjaW3fSa9Mj0yDnTf2UzusaudF51bkNLBvZOhX-uIbd9XLPb5FWSpWDncZ2LL8P6V_5ARSuO94</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Perryman, P.C.</creator><creator>Stubberud, A.R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1996</creationdate><title>Uniform, in-probability approximation of stochastic systems</title><author>Perryman, P.C. ; Stubberud, A.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_6008463</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Approximation methods</topic><topic>Fading</topic><topic>History</topic><topic>Linear systems</topic><topic>Mathematical model</topic><topic>Modeling</topic><topic>Nonlinear systems</topic><topic>Stochastic processes</topic><topic>Stochastic systems</topic><topic>System identification</topic><toplevel>online_resources</toplevel><creatorcontrib>Perryman, P.C.</creatorcontrib><creatorcontrib>Stubberud, A.R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Perryman, P.C.</au><au>Stubberud, A.R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Uniform, in-probability approximation of stochastic systems</atitle><btitle>Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers</btitle><stitle>ACSSC</stitle><date>1996</date><risdate>1996</risdate><volume>1</volume><spage>146</spage><epage>150 vol.1</epage><pages>146-150 vol.1</pages><issn>1058-6393</issn><eissn>2576-2303</eissn><isbn>9780818676468</isbn><isbn>0818676469</isbn><abstract>A system approximation theory useful for modeling stochastic systems is described. The theory applies to a 'large' class of continuous-time stochastic nonlinear systems characterized by a property called approximate finite memory in probability. Approximation is with respect to the input-output behavior of the system under consideration. 'Tractable' structures are proposed for system approximants along with approximation criteria and general conditions under which these structures satisfy the approximation criteria are given. The fundamental role played by these and related results in system modeling is discussed. Detailed developments of these results are provided by Perryman (see Ph.D dissertation, University of California, 1996).</abstract><pub>IEEE</pub><doi>10.1109/ACSSC.1996.600846</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1058-6393
ispartof Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers, 1996, Vol.1, p.146-150 vol.1
issn 1058-6393
2576-2303
language eng
recordid cdi_ieee_primary_600846
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Approximation methods
Fading
History
Linear systems
Mathematical model
Modeling
Nonlinear systems
Stochastic processes
Stochastic systems
System identification
title Uniform, in-probability approximation of stochastic systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A52%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Uniform,%20in-probability%20approximation%20of%20stochastic%20systems&rft.btitle=Conference%20Record%20of%20The%20Thirtieth%20Asilomar%20Conference%20on%20Signals,%20Systems%20and%20Computers&rft.au=Perryman,%20P.C.&rft.date=1996&rft.volume=1&rft.spage=146&rft.epage=150%20vol.1&rft.pages=146-150%20vol.1&rft.issn=1058-6393&rft.eissn=2576-2303&rft.isbn=9780818676468&rft.isbn_list=0818676469&rft_id=info:doi/10.1109/ACSSC.1996.600846&rft_dat=%3Cieee_6IE%3E600846%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=600846&rfr_iscdi=true