Uniform, in-probability approximation of stochastic systems
A system approximation theory useful for modeling stochastic systems is described. The theory applies to a 'large' class of continuous-time stochastic nonlinear systems characterized by a property called approximate finite memory in probability. Approximation is with respect to the input-o...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 150 vol.1 |
---|---|
container_issue | |
container_start_page | 146 |
container_title | |
container_volume | 1 |
creator | Perryman, P.C. Stubberud, A.R. |
description | A system approximation theory useful for modeling stochastic systems is described. The theory applies to a 'large' class of continuous-time stochastic nonlinear systems characterized by a property called approximate finite memory in probability. Approximation is with respect to the input-output behavior of the system under consideration. 'Tractable' structures are proposed for system approximants along with approximation criteria and general conditions under which these structures satisfy the approximation criteria are given. The fundamental role played by these and related results in system modeling is discussed. Detailed developments of these results are provided by Perryman (see Ph.D dissertation, University of California, 1996). |
doi_str_mv | 10.1109/ACSSC.1996.600846 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_600846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>600846</ieee_id><sourcerecordid>600846</sourcerecordid><originalsourceid>FETCH-ieee_primary_6008463</originalsourceid><addsrcrecordid>eNp9jt8KgjAchX_0B5LyAepqD5C2OZsbXYUU3VvXMmXSQp1su8i3T6jrzs3H4ePAAdgSHBOCxeGcF0UeEyFYzDDmKZtBkBwzFiUU0zmEIuOYE84yljK-gIDgI48YFXQFoXMvPCWl6eQDOD163Rjb7ZHuo8GaSla61X5EcpjaW3fSa9Mj0yDnTf2UzusaudF51bkNLBvZOhX-uIbd9XLPb5FWSpWDncZ2LL8P6V_5ARSuO94</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Uniform, in-probability approximation of stochastic systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Perryman, P.C. ; Stubberud, A.R.</creator><creatorcontrib>Perryman, P.C. ; Stubberud, A.R.</creatorcontrib><description>A system approximation theory useful for modeling stochastic systems is described. The theory applies to a 'large' class of continuous-time stochastic nonlinear systems characterized by a property called approximate finite memory in probability. Approximation is with respect to the input-output behavior of the system under consideration. 'Tractable' structures are proposed for system approximants along with approximation criteria and general conditions under which these structures satisfy the approximation criteria are given. The fundamental role played by these and related results in system modeling is discussed. Detailed developments of these results are provided by Perryman (see Ph.D dissertation, University of California, 1996).</description><identifier>ISSN: 1058-6393</identifier><identifier>ISBN: 9780818676468</identifier><identifier>ISBN: 0818676469</identifier><identifier>EISSN: 2576-2303</identifier><identifier>DOI: 10.1109/ACSSC.1996.600846</identifier><language>eng</language><publisher>IEEE</publisher><subject>Approximation methods ; Fading ; History ; Linear systems ; Mathematical model ; Modeling ; Nonlinear systems ; Stochastic processes ; Stochastic systems ; System identification</subject><ispartof>Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers, 1996, Vol.1, p.146-150 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/600846$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/600846$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Perryman, P.C.</creatorcontrib><creatorcontrib>Stubberud, A.R.</creatorcontrib><title>Uniform, in-probability approximation of stochastic systems</title><title>Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers</title><addtitle>ACSSC</addtitle><description>A system approximation theory useful for modeling stochastic systems is described. The theory applies to a 'large' class of continuous-time stochastic nonlinear systems characterized by a property called approximate finite memory in probability. Approximation is with respect to the input-output behavior of the system under consideration. 'Tractable' structures are proposed for system approximants along with approximation criteria and general conditions under which these structures satisfy the approximation criteria are given. The fundamental role played by these and related results in system modeling is discussed. Detailed developments of these results are provided by Perryman (see Ph.D dissertation, University of California, 1996).</description><subject>Approximation methods</subject><subject>Fading</subject><subject>History</subject><subject>Linear systems</subject><subject>Mathematical model</subject><subject>Modeling</subject><subject>Nonlinear systems</subject><subject>Stochastic processes</subject><subject>Stochastic systems</subject><subject>System identification</subject><issn>1058-6393</issn><issn>2576-2303</issn><isbn>9780818676468</isbn><isbn>0818676469</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1996</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9jt8KgjAchX_0B5LyAepqD5C2OZsbXYUU3VvXMmXSQp1su8i3T6jrzs3H4ePAAdgSHBOCxeGcF0UeEyFYzDDmKZtBkBwzFiUU0zmEIuOYE84yljK-gIDgI48YFXQFoXMvPCWl6eQDOD163Rjb7ZHuo8GaSla61X5EcpjaW3fSa9Mj0yDnTf2UzusaudF51bkNLBvZOhX-uIbd9XLPb5FWSpWDncZ2LL8P6V_5ARSuO94</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Perryman, P.C.</creator><creator>Stubberud, A.R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1996</creationdate><title>Uniform, in-probability approximation of stochastic systems</title><author>Perryman, P.C. ; Stubberud, A.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_6008463</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Approximation methods</topic><topic>Fading</topic><topic>History</topic><topic>Linear systems</topic><topic>Mathematical model</topic><topic>Modeling</topic><topic>Nonlinear systems</topic><topic>Stochastic processes</topic><topic>Stochastic systems</topic><topic>System identification</topic><toplevel>online_resources</toplevel><creatorcontrib>Perryman, P.C.</creatorcontrib><creatorcontrib>Stubberud, A.R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Perryman, P.C.</au><au>Stubberud, A.R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Uniform, in-probability approximation of stochastic systems</atitle><btitle>Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers</btitle><stitle>ACSSC</stitle><date>1996</date><risdate>1996</risdate><volume>1</volume><spage>146</spage><epage>150 vol.1</epage><pages>146-150 vol.1</pages><issn>1058-6393</issn><eissn>2576-2303</eissn><isbn>9780818676468</isbn><isbn>0818676469</isbn><abstract>A system approximation theory useful for modeling stochastic systems is described. The theory applies to a 'large' class of continuous-time stochastic nonlinear systems characterized by a property called approximate finite memory in probability. Approximation is with respect to the input-output behavior of the system under consideration. 'Tractable' structures are proposed for system approximants along with approximation criteria and general conditions under which these structures satisfy the approximation criteria are given. The fundamental role played by these and related results in system modeling is discussed. Detailed developments of these results are provided by Perryman (see Ph.D dissertation, University of California, 1996).</abstract><pub>IEEE</pub><doi>10.1109/ACSSC.1996.600846</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1058-6393 |
ispartof | Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers, 1996, Vol.1, p.146-150 vol.1 |
issn | 1058-6393 2576-2303 |
language | eng |
recordid | cdi_ieee_primary_600846 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Approximation methods Fading History Linear systems Mathematical model Modeling Nonlinear systems Stochastic processes Stochastic systems System identification |
title | Uniform, in-probability approximation of stochastic systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A52%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Uniform,%20in-probability%20approximation%20of%20stochastic%20systems&rft.btitle=Conference%20Record%20of%20The%20Thirtieth%20Asilomar%20Conference%20on%20Signals,%20Systems%20and%20Computers&rft.au=Perryman,%20P.C.&rft.date=1996&rft.volume=1&rft.spage=146&rft.epage=150%20vol.1&rft.pages=146-150%20vol.1&rft.issn=1058-6393&rft.eissn=2576-2303&rft.isbn=9780818676468&rft.isbn_list=0818676469&rft_id=info:doi/10.1109/ACSSC.1996.600846&rft_dat=%3Cieee_6IE%3E600846%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=600846&rfr_iscdi=true |