Scalable time definite integration in parallel computing
In parallel computing, the memory requirement is an important problem, and in parallel software development, it is vital to optimize the memory management strategy. Programmers need to know the memory optimizing degree. But, the parallel programs' performance evaluation metric speedup only refe...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16 |
---|---|
container_issue | |
container_start_page | 13 |
container_title | |
container_volume | 2 |
creator | Yue Hu Wei-qin Tong Xiao-li Zhi Huai-liang Xuan |
description | In parallel computing, the memory requirement is an important problem, and in parallel software development, it is vital to optimize the memory management strategy. Programmers need to know the memory optimizing degree. But, the parallel programs' performance evaluation metric speedup only refers to computing time, without considering the memory cost when executing programs. In this paper, the relationship between computing time and memory requirement is expressed by a formula, with which the influence of memory requirement in parallel computing can be calculated. The experiment results demonstrate that the scalable time definite integration proposed in this paper, can properly predict parallel computing time under certain parallel system size, and also could reflect the operating environment's working capacity. |
doi_str_mv | 10.1109/CCIENG.2011.6008055 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6008055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6008055</ieee_id><sourcerecordid>6008055</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-787b812e04ef40730143a79ef0f1ffdd85dc0bb765f3ec3fb7560997e5639f973</originalsourceid><addsrcrecordid>eNpFT81Kw0AYXBFBrX2CXvYFEr_N_h8l1FooerD3skm-r6xs0pCsB9_egAXnMjOHGWYY2wgohQD_XNf77fuurECI0gA40PqGPQpVKeW1d_7233h7z9bz_AULjPFL4oG5zzak0CTkOfbIO6Q4xIw8DhnPU8jxMiyaj2EKKWHi7aUfv3Mczk_sjkKacX3lFTu-bo_1W3H42O3rl0MRPeTCOts4USEoJAVWglAyWI8EJIi6zumuhaaxRpPEVlJjtYFlKGojPXkrV2zzVxsR8TROsQ_Tz-l6VP4C1CNHSg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Scalable time definite integration in parallel computing</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yue Hu ; Wei-qin Tong ; Xiao-li Zhi ; Huai-liang Xuan</creator><creatorcontrib>Yue Hu ; Wei-qin Tong ; Xiao-li Zhi ; Huai-liang Xuan</creatorcontrib><description>In parallel computing, the memory requirement is an important problem, and in parallel software development, it is vital to optimize the memory management strategy. Programmers need to know the memory optimizing degree. But, the parallel programs' performance evaluation metric speedup only refers to computing time, without considering the memory cost when executing programs. In this paper, the relationship between computing time and memory requirement is expressed by a formula, with which the influence of memory requirement in parallel computing can be calculated. The experiment results demonstrate that the scalable time definite integration proposed in this paper, can properly predict parallel computing time under certain parallel system size, and also could reflect the operating environment's working capacity.</description><identifier>ISBN: 1424495997</identifier><identifier>ISBN: 9781424495993</identifier><identifier>EISBN: 1424495989</identifier><identifier>EISBN: 1424496004</identifier><identifier>EISBN: 9781424495986</identifier><identifier>EISBN: 9781424496006</identifier><identifier>DOI: 10.1109/CCIENG.2011.6008055</identifier><language>eng</language><publisher>IEEE</publisher><subject>Central Processing Unit ; Computational modeling ; Computers ; Equations ; Mathematical model ; Memory management ; Parallel processing</subject><ispartof>2011 IEEE 2nd International Conference on Computing, Control and Industrial Engineering, 2011, Vol.2, p.13-16</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6008055$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6008055$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yue Hu</creatorcontrib><creatorcontrib>Wei-qin Tong</creatorcontrib><creatorcontrib>Xiao-li Zhi</creatorcontrib><creatorcontrib>Huai-liang Xuan</creatorcontrib><title>Scalable time definite integration in parallel computing</title><title>2011 IEEE 2nd International Conference on Computing, Control and Industrial Engineering</title><addtitle>CCIENG</addtitle><description>In parallel computing, the memory requirement is an important problem, and in parallel software development, it is vital to optimize the memory management strategy. Programmers need to know the memory optimizing degree. But, the parallel programs' performance evaluation metric speedup only refers to computing time, without considering the memory cost when executing programs. In this paper, the relationship between computing time and memory requirement is expressed by a formula, with which the influence of memory requirement in parallel computing can be calculated. The experiment results demonstrate that the scalable time definite integration proposed in this paper, can properly predict parallel computing time under certain parallel system size, and also could reflect the operating environment's working capacity.</description><subject>Central Processing Unit</subject><subject>Computational modeling</subject><subject>Computers</subject><subject>Equations</subject><subject>Mathematical model</subject><subject>Memory management</subject><subject>Parallel processing</subject><isbn>1424495997</isbn><isbn>9781424495993</isbn><isbn>1424495989</isbn><isbn>1424496004</isbn><isbn>9781424495986</isbn><isbn>9781424496006</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFT81Kw0AYXBFBrX2CXvYFEr_N_h8l1FooerD3skm-r6xs0pCsB9_egAXnMjOHGWYY2wgohQD_XNf77fuurECI0gA40PqGPQpVKeW1d_7233h7z9bz_AULjPFL4oG5zzak0CTkOfbIO6Q4xIw8DhnPU8jxMiyaj2EKKWHi7aUfv3Mczk_sjkKacX3lFTu-bo_1W3H42O3rl0MRPeTCOts4USEoJAVWglAyWI8EJIi6zumuhaaxRpPEVlJjtYFlKGojPXkrV2zzVxsR8TROsQ_Tz-l6VP4C1CNHSg</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>Yue Hu</creator><creator>Wei-qin Tong</creator><creator>Xiao-li Zhi</creator><creator>Huai-liang Xuan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201108</creationdate><title>Scalable time definite integration in parallel computing</title><author>Yue Hu ; Wei-qin Tong ; Xiao-li Zhi ; Huai-liang Xuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-787b812e04ef40730143a79ef0f1ffdd85dc0bb765f3ec3fb7560997e5639f973</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Central Processing Unit</topic><topic>Computational modeling</topic><topic>Computers</topic><topic>Equations</topic><topic>Mathematical model</topic><topic>Memory management</topic><topic>Parallel processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Yue Hu</creatorcontrib><creatorcontrib>Wei-qin Tong</creatorcontrib><creatorcontrib>Xiao-li Zhi</creatorcontrib><creatorcontrib>Huai-liang Xuan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yue Hu</au><au>Wei-qin Tong</au><au>Xiao-li Zhi</au><au>Huai-liang Xuan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Scalable time definite integration in parallel computing</atitle><btitle>2011 IEEE 2nd International Conference on Computing, Control and Industrial Engineering</btitle><stitle>CCIENG</stitle><date>2011-08</date><risdate>2011</risdate><volume>2</volume><spage>13</spage><epage>16</epage><pages>13-16</pages><isbn>1424495997</isbn><isbn>9781424495993</isbn><eisbn>1424495989</eisbn><eisbn>1424496004</eisbn><eisbn>9781424495986</eisbn><eisbn>9781424496006</eisbn><abstract>In parallel computing, the memory requirement is an important problem, and in parallel software development, it is vital to optimize the memory management strategy. Programmers need to know the memory optimizing degree. But, the parallel programs' performance evaluation metric speedup only refers to computing time, without considering the memory cost when executing programs. In this paper, the relationship between computing time and memory requirement is expressed by a formula, with which the influence of memory requirement in parallel computing can be calculated. The experiment results demonstrate that the scalable time definite integration proposed in this paper, can properly predict parallel computing time under certain parallel system size, and also could reflect the operating environment's working capacity.</abstract><pub>IEEE</pub><doi>10.1109/CCIENG.2011.6008055</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424495997 |
ispartof | 2011 IEEE 2nd International Conference on Computing, Control and Industrial Engineering, 2011, Vol.2, p.13-16 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6008055 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Central Processing Unit Computational modeling Computers Equations Mathematical model Memory management Parallel processing |
title | Scalable time definite integration in parallel computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A28%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Scalable%20time%20definite%20integration%20in%20parallel%20computing&rft.btitle=2011%20IEEE%202nd%20International%20Conference%20on%20Computing,%20Control%20and%20Industrial%20Engineering&rft.au=Yue%20Hu&rft.date=2011-08&rft.volume=2&rft.spage=13&rft.epage=16&rft.pages=13-16&rft.isbn=1424495997&rft.isbn_list=9781424495993&rft_id=info:doi/10.1109/CCIENG.2011.6008055&rft_dat=%3Cieee_6IE%3E6008055%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424495989&rft.eisbn_list=1424496004&rft.eisbn_list=9781424495986&rft.eisbn_list=9781424496006&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6008055&rfr_iscdi=true |