Scalable time definite integration in parallel computing

In parallel computing, the memory requirement is an important problem, and in parallel software development, it is vital to optimize the memory management strategy. Programmers need to know the memory optimizing degree. But, the parallel programs' performance evaluation metric speedup only refe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yue Hu, Wei-qin Tong, Xiao-li Zhi, Huai-liang Xuan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue
container_start_page 13
container_title
container_volume 2
creator Yue Hu
Wei-qin Tong
Xiao-li Zhi
Huai-liang Xuan
description In parallel computing, the memory requirement is an important problem, and in parallel software development, it is vital to optimize the memory management strategy. Programmers need to know the memory optimizing degree. But, the parallel programs' performance evaluation metric speedup only refers to computing time, without considering the memory cost when executing programs. In this paper, the relationship between computing time and memory requirement is expressed by a formula, with which the influence of memory requirement in parallel computing can be calculated. The experiment results demonstrate that the scalable time definite integration proposed in this paper, can properly predict parallel computing time under certain parallel system size, and also could reflect the operating environment's working capacity.
doi_str_mv 10.1109/CCIENG.2011.6008055
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6008055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6008055</ieee_id><sourcerecordid>6008055</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-787b812e04ef40730143a79ef0f1ffdd85dc0bb765f3ec3fb7560997e5639f973</originalsourceid><addsrcrecordid>eNpFT81Kw0AYXBFBrX2CXvYFEr_N_h8l1FooerD3skm-r6xs0pCsB9_egAXnMjOHGWYY2wgohQD_XNf77fuurECI0gA40PqGPQpVKeW1d_7233h7z9bz_AULjPFL4oG5zzak0CTkOfbIO6Q4xIw8DhnPU8jxMiyaj2EKKWHi7aUfv3Mczk_sjkKacX3lFTu-bo_1W3H42O3rl0MRPeTCOts4USEoJAVWglAyWI8EJIi6zumuhaaxRpPEVlJjtYFlKGojPXkrV2zzVxsR8TROsQ_Tz-l6VP4C1CNHSg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Scalable time definite integration in parallel computing</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yue Hu ; Wei-qin Tong ; Xiao-li Zhi ; Huai-liang Xuan</creator><creatorcontrib>Yue Hu ; Wei-qin Tong ; Xiao-li Zhi ; Huai-liang Xuan</creatorcontrib><description>In parallel computing, the memory requirement is an important problem, and in parallel software development, it is vital to optimize the memory management strategy. Programmers need to know the memory optimizing degree. But, the parallel programs' performance evaluation metric speedup only refers to computing time, without considering the memory cost when executing programs. In this paper, the relationship between computing time and memory requirement is expressed by a formula, with which the influence of memory requirement in parallel computing can be calculated. The experiment results demonstrate that the scalable time definite integration proposed in this paper, can properly predict parallel computing time under certain parallel system size, and also could reflect the operating environment's working capacity.</description><identifier>ISBN: 1424495997</identifier><identifier>ISBN: 9781424495993</identifier><identifier>EISBN: 1424495989</identifier><identifier>EISBN: 1424496004</identifier><identifier>EISBN: 9781424495986</identifier><identifier>EISBN: 9781424496006</identifier><identifier>DOI: 10.1109/CCIENG.2011.6008055</identifier><language>eng</language><publisher>IEEE</publisher><subject>Central Processing Unit ; Computational modeling ; Computers ; Equations ; Mathematical model ; Memory management ; Parallel processing</subject><ispartof>2011 IEEE 2nd International Conference on Computing, Control and Industrial Engineering, 2011, Vol.2, p.13-16</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6008055$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6008055$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yue Hu</creatorcontrib><creatorcontrib>Wei-qin Tong</creatorcontrib><creatorcontrib>Xiao-li Zhi</creatorcontrib><creatorcontrib>Huai-liang Xuan</creatorcontrib><title>Scalable time definite integration in parallel computing</title><title>2011 IEEE 2nd International Conference on Computing, Control and Industrial Engineering</title><addtitle>CCIENG</addtitle><description>In parallel computing, the memory requirement is an important problem, and in parallel software development, it is vital to optimize the memory management strategy. Programmers need to know the memory optimizing degree. But, the parallel programs' performance evaluation metric speedup only refers to computing time, without considering the memory cost when executing programs. In this paper, the relationship between computing time and memory requirement is expressed by a formula, with which the influence of memory requirement in parallel computing can be calculated. The experiment results demonstrate that the scalable time definite integration proposed in this paper, can properly predict parallel computing time under certain parallel system size, and also could reflect the operating environment's working capacity.</description><subject>Central Processing Unit</subject><subject>Computational modeling</subject><subject>Computers</subject><subject>Equations</subject><subject>Mathematical model</subject><subject>Memory management</subject><subject>Parallel processing</subject><isbn>1424495997</isbn><isbn>9781424495993</isbn><isbn>1424495989</isbn><isbn>1424496004</isbn><isbn>9781424495986</isbn><isbn>9781424496006</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFT81Kw0AYXBFBrX2CXvYFEr_N_h8l1FooerD3skm-r6xs0pCsB9_egAXnMjOHGWYY2wgohQD_XNf77fuurECI0gA40PqGPQpVKeW1d_7233h7z9bz_AULjPFL4oG5zzak0CTkOfbIO6Q4xIw8DhnPU8jxMiyaj2EKKWHi7aUfv3Mczk_sjkKacX3lFTu-bo_1W3H42O3rl0MRPeTCOts4USEoJAVWglAyWI8EJIi6zumuhaaxRpPEVlJjtYFlKGojPXkrV2zzVxsR8TROsQ_Tz-l6VP4C1CNHSg</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>Yue Hu</creator><creator>Wei-qin Tong</creator><creator>Xiao-li Zhi</creator><creator>Huai-liang Xuan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201108</creationdate><title>Scalable time definite integration in parallel computing</title><author>Yue Hu ; Wei-qin Tong ; Xiao-li Zhi ; Huai-liang Xuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-787b812e04ef40730143a79ef0f1ffdd85dc0bb765f3ec3fb7560997e5639f973</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Central Processing Unit</topic><topic>Computational modeling</topic><topic>Computers</topic><topic>Equations</topic><topic>Mathematical model</topic><topic>Memory management</topic><topic>Parallel processing</topic><toplevel>online_resources</toplevel><creatorcontrib>Yue Hu</creatorcontrib><creatorcontrib>Wei-qin Tong</creatorcontrib><creatorcontrib>Xiao-li Zhi</creatorcontrib><creatorcontrib>Huai-liang Xuan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yue Hu</au><au>Wei-qin Tong</au><au>Xiao-li Zhi</au><au>Huai-liang Xuan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Scalable time definite integration in parallel computing</atitle><btitle>2011 IEEE 2nd International Conference on Computing, Control and Industrial Engineering</btitle><stitle>CCIENG</stitle><date>2011-08</date><risdate>2011</risdate><volume>2</volume><spage>13</spage><epage>16</epage><pages>13-16</pages><isbn>1424495997</isbn><isbn>9781424495993</isbn><eisbn>1424495989</eisbn><eisbn>1424496004</eisbn><eisbn>9781424495986</eisbn><eisbn>9781424496006</eisbn><abstract>In parallel computing, the memory requirement is an important problem, and in parallel software development, it is vital to optimize the memory management strategy. Programmers need to know the memory optimizing degree. But, the parallel programs' performance evaluation metric speedup only refers to computing time, without considering the memory cost when executing programs. In this paper, the relationship between computing time and memory requirement is expressed by a formula, with which the influence of memory requirement in parallel computing can be calculated. The experiment results demonstrate that the scalable time definite integration proposed in this paper, can properly predict parallel computing time under certain parallel system size, and also could reflect the operating environment's working capacity.</abstract><pub>IEEE</pub><doi>10.1109/CCIENG.2011.6008055</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424495997
ispartof 2011 IEEE 2nd International Conference on Computing, Control and Industrial Engineering, 2011, Vol.2, p.13-16
issn
language eng
recordid cdi_ieee_primary_6008055
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Central Processing Unit
Computational modeling
Computers
Equations
Mathematical model
Memory management
Parallel processing
title Scalable time definite integration in parallel computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A28%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Scalable%20time%20definite%20integration%20in%20parallel%20computing&rft.btitle=2011%20IEEE%202nd%20International%20Conference%20on%20Computing,%20Control%20and%20Industrial%20Engineering&rft.au=Yue%20Hu&rft.date=2011-08&rft.volume=2&rft.spage=13&rft.epage=16&rft.pages=13-16&rft.isbn=1424495997&rft.isbn_list=9781424495993&rft_id=info:doi/10.1109/CCIENG.2011.6008055&rft_dat=%3Cieee_6IE%3E6008055%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424495989&rft.eisbn_list=1424496004&rft.eisbn_list=9781424495986&rft.eisbn_list=9781424496006&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6008055&rfr_iscdi=true