Hypoglycemia detection using fuzzy inference system with genetic algorithm

In this paper, we develope a genetic algorithm based fuzzy inference system to recognize hypoglycemic episodes based on heart rate and corrected QT interval of the electrocardiogram (ECG) signal. Genetic algorithm is introduced to optimize the membership functions and fuzzy rules. A practical experi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sai Ho Ling, Nguyen, Hung T., Leung, Frank Hung Fat
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2231
container_issue
container_start_page 2225
container_title
container_volume
creator Sai Ho Ling
Nguyen, Hung T.
Leung, Frank Hung Fat
description In this paper, we develope a genetic algorithm based fuzzy inference system to recognize hypoglycemic episodes based on heart rate and corrected QT interval of the electrocardiogram (ECG) signal. Genetic algorithm is introduced to optimize the membership functions and fuzzy rules. A practical experiment based on data from 15 children with T1DM is studied. All the data sets are collected from the Department of Health, Government of Western Australia. To prevent the phenomenon of overtraining (over-fitting), a validation strategy that may adjust the fitness function is proposed. Thus, the data are organized into a training set, a validation set, and a testing set randomly selected. The classification results in term of sensitivity, specificity, and receiver operating characteristic (ROC) analysis show that the proposed classification method performs well.
doi_str_mv 10.1109/FUZZY.2011.6007319
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6007319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6007319</ieee_id><sourcerecordid>6007319</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-4a2f17d02084313bc38e7930579b7207267f86a288dc682eea9a2edcdee250983</originalsourceid><addsrcrecordid>eNpVUEtLAzEYjKhgqfsH9JI_sGtem8dRirVKwYs92EtJs9-ukX2UTYpsf30D9uJchhmY4fsGoQdKCkqJeVputtuvghFKC0mI4tRcocwoTQUTIklVXv_TJb1BsxTUuSq1uENZCD8kQUrDlZqh99V0GJp2ctB5iyuI4KIfenwMvm9wfTydJuz7GkboHeAwhQgd_vXxGzfQQ_QO27YZxmR09-i2tm2A7MJztFm-fC5W-frj9W3xvM59ui7mwrKaqoowogWnfO-4BmU4KZXZK0YUk6rW0jKtKyc1A7DGMqhcBcDK9Aifo8e_Xg8Au8PoOztOu8sa_AxBeFGj</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hypoglycemia detection using fuzzy inference system with genetic algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sai Ho Ling ; Nguyen, Hung T. ; Leung, Frank Hung Fat</creator><creatorcontrib>Sai Ho Ling ; Nguyen, Hung T. ; Leung, Frank Hung Fat</creatorcontrib><description>In this paper, we develope a genetic algorithm based fuzzy inference system to recognize hypoglycemic episodes based on heart rate and corrected QT interval of the electrocardiogram (ECG) signal. Genetic algorithm is introduced to optimize the membership functions and fuzzy rules. A practical experiment based on data from 15 children with T1DM is studied. All the data sets are collected from the Department of Health, Government of Western Australia. To prevent the phenomenon of overtraining (over-fitting), a validation strategy that may adjust the fitness function is proposed. Thus, the data are organized into a training set, a validation set, and a testing set randomly selected. The classification results in term of sensitivity, specificity, and receiver operating characteristic (ROC) analysis show that the proposed classification method performs well.</description><identifier>ISSN: 1098-7584</identifier><identifier>ISBN: 9781424473151</identifier><identifier>ISBN: 1424473152</identifier><identifier>EISBN: 9781424473175</identifier><identifier>EISBN: 1424473179</identifier><identifier>EISBN: 1424473160</identifier><identifier>EISBN: 9781424473168</identifier><identifier>DOI: 10.1109/FUZZY.2011.6007319</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological cells ; Brain modeling ; Diabetes ; Fuzzy logic ; Genetic algorithm ; Genetic algorithms ; Heart rate ; Hypoglycemia ; Sensitivity ; Testing ; Training</subject><ispartof>2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011), 2011, p.2225-2231</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6007319$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6007319$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sai Ho Ling</creatorcontrib><creatorcontrib>Nguyen, Hung T.</creatorcontrib><creatorcontrib>Leung, Frank Hung Fat</creatorcontrib><title>Hypoglycemia detection using fuzzy inference system with genetic algorithm</title><title>2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011)</title><addtitle>FUZZY</addtitle><description>In this paper, we develope a genetic algorithm based fuzzy inference system to recognize hypoglycemic episodes based on heart rate and corrected QT interval of the electrocardiogram (ECG) signal. Genetic algorithm is introduced to optimize the membership functions and fuzzy rules. A practical experiment based on data from 15 children with T1DM is studied. All the data sets are collected from the Department of Health, Government of Western Australia. To prevent the phenomenon of overtraining (over-fitting), a validation strategy that may adjust the fitness function is proposed. Thus, the data are organized into a training set, a validation set, and a testing set randomly selected. The classification results in term of sensitivity, specificity, and receiver operating characteristic (ROC) analysis show that the proposed classification method performs well.</description><subject>Biological cells</subject><subject>Brain modeling</subject><subject>Diabetes</subject><subject>Fuzzy logic</subject><subject>Genetic algorithm</subject><subject>Genetic algorithms</subject><subject>Heart rate</subject><subject>Hypoglycemia</subject><subject>Sensitivity</subject><subject>Testing</subject><subject>Training</subject><issn>1098-7584</issn><isbn>9781424473151</isbn><isbn>1424473152</isbn><isbn>9781424473175</isbn><isbn>1424473179</isbn><isbn>1424473160</isbn><isbn>9781424473168</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUEtLAzEYjKhgqfsH9JI_sGtem8dRirVKwYs92EtJs9-ukX2UTYpsf30D9uJchhmY4fsGoQdKCkqJeVputtuvghFKC0mI4tRcocwoTQUTIklVXv_TJb1BsxTUuSq1uENZCD8kQUrDlZqh99V0GJp2ctB5iyuI4KIfenwMvm9wfTydJuz7GkboHeAwhQgd_vXxGzfQQ_QO27YZxmR09-i2tm2A7MJztFm-fC5W-frj9W3xvM59ui7mwrKaqoowogWnfO-4BmU4KZXZK0YUk6rW0jKtKyc1A7DGMqhcBcDK9Aifo8e_Xg8Au8PoOztOu8sa_AxBeFGj</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Sai Ho Ling</creator><creator>Nguyen, Hung T.</creator><creator>Leung, Frank Hung Fat</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201106</creationdate><title>Hypoglycemia detection using fuzzy inference system with genetic algorithm</title><author>Sai Ho Ling ; Nguyen, Hung T. ; Leung, Frank Hung Fat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-4a2f17d02084313bc38e7930579b7207267f86a288dc682eea9a2edcdee250983</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biological cells</topic><topic>Brain modeling</topic><topic>Diabetes</topic><topic>Fuzzy logic</topic><topic>Genetic algorithm</topic><topic>Genetic algorithms</topic><topic>Heart rate</topic><topic>Hypoglycemia</topic><topic>Sensitivity</topic><topic>Testing</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Sai Ho Ling</creatorcontrib><creatorcontrib>Nguyen, Hung T.</creatorcontrib><creatorcontrib>Leung, Frank Hung Fat</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sai Ho Ling</au><au>Nguyen, Hung T.</au><au>Leung, Frank Hung Fat</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hypoglycemia detection using fuzzy inference system with genetic algorithm</atitle><btitle>2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011)</btitle><stitle>FUZZY</stitle><date>2011-06</date><risdate>2011</risdate><spage>2225</spage><epage>2231</epage><pages>2225-2231</pages><issn>1098-7584</issn><isbn>9781424473151</isbn><isbn>1424473152</isbn><eisbn>9781424473175</eisbn><eisbn>1424473179</eisbn><eisbn>1424473160</eisbn><eisbn>9781424473168</eisbn><abstract>In this paper, we develope a genetic algorithm based fuzzy inference system to recognize hypoglycemic episodes based on heart rate and corrected QT interval of the electrocardiogram (ECG) signal. Genetic algorithm is introduced to optimize the membership functions and fuzzy rules. A practical experiment based on data from 15 children with T1DM is studied. All the data sets are collected from the Department of Health, Government of Western Australia. To prevent the phenomenon of overtraining (over-fitting), a validation strategy that may adjust the fitness function is proposed. Thus, the data are organized into a training set, a validation set, and a testing set randomly selected. The classification results in term of sensitivity, specificity, and receiver operating characteristic (ROC) analysis show that the proposed classification method performs well.</abstract><pub>IEEE</pub><doi>10.1109/FUZZY.2011.6007319</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1098-7584
ispartof 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011), 2011, p.2225-2231
issn 1098-7584
language eng
recordid cdi_ieee_primary_6007319
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biological cells
Brain modeling
Diabetes
Fuzzy logic
Genetic algorithm
Genetic algorithms
Heart rate
Hypoglycemia
Sensitivity
Testing
Training
title Hypoglycemia detection using fuzzy inference system with genetic algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A25%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hypoglycemia%20detection%20using%20fuzzy%20inference%20system%20with%20genetic%20algorithm&rft.btitle=2011%20IEEE%20International%20Conference%20on%20Fuzzy%20Systems%20(FUZZ-IEEE%202011)&rft.au=Sai%20Ho%20Ling&rft.date=2011-06&rft.spage=2225&rft.epage=2231&rft.pages=2225-2231&rft.issn=1098-7584&rft.isbn=9781424473151&rft.isbn_list=1424473152&rft_id=info:doi/10.1109/FUZZY.2011.6007319&rft_dat=%3Cieee_6IE%3E6007319%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424473175&rft.eisbn_list=1424473179&rft.eisbn_list=1424473160&rft.eisbn_list=9781424473168&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6007319&rfr_iscdi=true