Global Trajectory Construction across Multi-cameras via Graph Matching
Behavior analysis across multi-cameras becomes more and more popular with the rapid development of camera network in video surveillance. In this paper, we propose a novel unsupervised graph matching framework to associate trajectories across partially overlapping cameras. Firstly, trajectory extract...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 806 |
---|---|
container_issue | |
container_start_page | 801 |
container_title | |
container_volume | |
creator | Xiaobin Zhu Jing Liu Jinqiao Wang Wei Fu Hanqing Lu Yikai Fang |
description | Behavior analysis across multi-cameras becomes more and more popular with the rapid development of camera network in video surveillance. In this paper, we propose a novel unsupervised graph matching framework to associate trajectories across partially overlapping cameras. Firstly, trajectory extraction is based on object extraction and tracking and is followed by a homographic projection to a mosaic-plane. And we extract appearance and spatio-temporal features for trajectory description. Then a robust graph matching algorithm based on reweighted random walk is adopted for trajectory association. The association is formulated as node ranking and selection on an association graph whose nodes represent candidate correspondences of trajectories. Finally, the pairs of corresponding trajectories in overlapping regions are fused by an adaptive averaging scheme, in which trajectories with more observations and longer length is given higher weight. Experiments and comparison on real scenarios demonstrate the effectiveness of the proposed approach. |
doi_str_mv | 10.1109/ICIG.2011.101 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6005975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6005975</ieee_id><sourcerecordid>6005975</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-ad2443190e3749ea65ee56e4799df5f00b44518c1518580242c81bee2ee6c8bc3</originalsourceid><addsrcrecordid>eNotj81Kw0AURkdEUGuWrtzMCyTem8xPZinBpoEWN9mXyfTGTkmTMpMKfXsD-i3O2R34GHtFyBDBvDdVU2c5IGYIeMcSo0vQykghBep79oxCao1SATyyJMYTLFPK5IhPbF0PU2cH3gZ7IjdP4caraYxzuLrZTyO3Lkwx8t11mH3q7JmCjfzHW14HeznynZ3d0Y_fL-yht0Ok5N8r1q4_22qTbr_qpvrYpt7AnNpDLkSBBqjQwpBVkkgqEtqYQy97gE4IiaXDBbKEXOSuxI4oJ1Ku7FyxYm9_WU9E-0vwZxtu--WYNFoWv4rsSzU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Global Trajectory Construction across Multi-cameras via Graph Matching</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xiaobin Zhu ; Jing Liu ; Jinqiao Wang ; Wei Fu ; Hanqing Lu ; Yikai Fang</creator><creatorcontrib>Xiaobin Zhu ; Jing Liu ; Jinqiao Wang ; Wei Fu ; Hanqing Lu ; Yikai Fang</creatorcontrib><description>Behavior analysis across multi-cameras becomes more and more popular with the rapid development of camera network in video surveillance. In this paper, we propose a novel unsupervised graph matching framework to associate trajectories across partially overlapping cameras. Firstly, trajectory extraction is based on object extraction and tracking and is followed by a homographic projection to a mosaic-plane. And we extract appearance and spatio-temporal features for trajectory description. Then a robust graph matching algorithm based on reweighted random walk is adopted for trajectory association. The association is formulated as node ranking and selection on an association graph whose nodes represent candidate correspondences of trajectories. Finally, the pairs of corresponding trajectories in overlapping regions are fused by an adaptive averaging scheme, in which trajectories with more observations and longer length is given higher weight. Experiments and comparison on real scenarios demonstrate the effectiveness of the proposed approach.</description><identifier>ISBN: 1457715600</identifier><identifier>ISBN: 9781457715600</identifier><identifier>EISBN: 9780769545417</identifier><identifier>EISBN: 0769545416</identifier><identifier>DOI: 10.1109/ICIG.2011.101</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bipartite graph ; camera-network ; Cameras ; Feature extraction ; fusion ; Geometry ; graph matching ; Noise ; reweighted random walk ; Robustness ; Trajectory ; trajectory association ; trajectory projection</subject><ispartof>2011 Sixth International Conference on Image and Graphics, 2011, p.801-806</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6005975$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6005975$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiaobin Zhu</creatorcontrib><creatorcontrib>Jing Liu</creatorcontrib><creatorcontrib>Jinqiao Wang</creatorcontrib><creatorcontrib>Wei Fu</creatorcontrib><creatorcontrib>Hanqing Lu</creatorcontrib><creatorcontrib>Yikai Fang</creatorcontrib><title>Global Trajectory Construction across Multi-cameras via Graph Matching</title><title>2011 Sixth International Conference on Image and Graphics</title><addtitle>icig</addtitle><description>Behavior analysis across multi-cameras becomes more and more popular with the rapid development of camera network in video surveillance. In this paper, we propose a novel unsupervised graph matching framework to associate trajectories across partially overlapping cameras. Firstly, trajectory extraction is based on object extraction and tracking and is followed by a homographic projection to a mosaic-plane. And we extract appearance and spatio-temporal features for trajectory description. Then a robust graph matching algorithm based on reweighted random walk is adopted for trajectory association. The association is formulated as node ranking and selection on an association graph whose nodes represent candidate correspondences of trajectories. Finally, the pairs of corresponding trajectories in overlapping regions are fused by an adaptive averaging scheme, in which trajectories with more observations and longer length is given higher weight. Experiments and comparison on real scenarios demonstrate the effectiveness of the proposed approach.</description><subject>Bipartite graph</subject><subject>camera-network</subject><subject>Cameras</subject><subject>Feature extraction</subject><subject>fusion</subject><subject>Geometry</subject><subject>graph matching</subject><subject>Noise</subject><subject>reweighted random walk</subject><subject>Robustness</subject><subject>Trajectory</subject><subject>trajectory association</subject><subject>trajectory projection</subject><isbn>1457715600</isbn><isbn>9781457715600</isbn><isbn>9780769545417</isbn><isbn>0769545416</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81Kw0AURkdEUGuWrtzMCyTem8xPZinBpoEWN9mXyfTGTkmTMpMKfXsD-i3O2R34GHtFyBDBvDdVU2c5IGYIeMcSo0vQykghBep79oxCao1SATyyJMYTLFPK5IhPbF0PU2cH3gZ7IjdP4caraYxzuLrZTyO3Lkwx8t11mH3q7JmCjfzHW14HeznynZ3d0Y_fL-yht0Ok5N8r1q4_22qTbr_qpvrYpt7AnNpDLkSBBqjQwpBVkkgqEtqYQy97gE4IiaXDBbKEXOSuxI4oJ1Ku7FyxYm9_WU9E-0vwZxtu--WYNFoWv4rsSzU</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>Xiaobin Zhu</creator><creator>Jing Liu</creator><creator>Jinqiao Wang</creator><creator>Wei Fu</creator><creator>Hanqing Lu</creator><creator>Yikai Fang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201108</creationdate><title>Global Trajectory Construction across Multi-cameras via Graph Matching</title><author>Xiaobin Zhu ; Jing Liu ; Jinqiao Wang ; Wei Fu ; Hanqing Lu ; Yikai Fang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-ad2443190e3749ea65ee56e4799df5f00b44518c1518580242c81bee2ee6c8bc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bipartite graph</topic><topic>camera-network</topic><topic>Cameras</topic><topic>Feature extraction</topic><topic>fusion</topic><topic>Geometry</topic><topic>graph matching</topic><topic>Noise</topic><topic>reweighted random walk</topic><topic>Robustness</topic><topic>Trajectory</topic><topic>trajectory association</topic><topic>trajectory projection</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiaobin Zhu</creatorcontrib><creatorcontrib>Jing Liu</creatorcontrib><creatorcontrib>Jinqiao Wang</creatorcontrib><creatorcontrib>Wei Fu</creatorcontrib><creatorcontrib>Hanqing Lu</creatorcontrib><creatorcontrib>Yikai Fang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiaobin Zhu</au><au>Jing Liu</au><au>Jinqiao Wang</au><au>Wei Fu</au><au>Hanqing Lu</au><au>Yikai Fang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Global Trajectory Construction across Multi-cameras via Graph Matching</atitle><btitle>2011 Sixth International Conference on Image and Graphics</btitle><stitle>icig</stitle><date>2011-08</date><risdate>2011</risdate><spage>801</spage><epage>806</epage><pages>801-806</pages><isbn>1457715600</isbn><isbn>9781457715600</isbn><eisbn>9780769545417</eisbn><eisbn>0769545416</eisbn><abstract>Behavior analysis across multi-cameras becomes more and more popular with the rapid development of camera network in video surveillance. In this paper, we propose a novel unsupervised graph matching framework to associate trajectories across partially overlapping cameras. Firstly, trajectory extraction is based on object extraction and tracking and is followed by a homographic projection to a mosaic-plane. And we extract appearance and spatio-temporal features for trajectory description. Then a robust graph matching algorithm based on reweighted random walk is adopted for trajectory association. The association is formulated as node ranking and selection on an association graph whose nodes represent candidate correspondences of trajectories. Finally, the pairs of corresponding trajectories in overlapping regions are fused by an adaptive averaging scheme, in which trajectories with more observations and longer length is given higher weight. Experiments and comparison on real scenarios demonstrate the effectiveness of the proposed approach.</abstract><pub>IEEE</pub><doi>10.1109/ICIG.2011.101</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1457715600 |
ispartof | 2011 Sixth International Conference on Image and Graphics, 2011, p.801-806 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6005975 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bipartite graph camera-network Cameras Feature extraction fusion Geometry graph matching Noise reweighted random walk Robustness Trajectory trajectory association trajectory projection |
title | Global Trajectory Construction across Multi-cameras via Graph Matching |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A10%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Global%20Trajectory%20Construction%20across%20Multi-cameras%20via%20Graph%20Matching&rft.btitle=2011%20Sixth%20International%20Conference%20on%20Image%20and%20Graphics&rft.au=Xiaobin%20Zhu&rft.date=2011-08&rft.spage=801&rft.epage=806&rft.pages=801-806&rft.isbn=1457715600&rft.isbn_list=9781457715600&rft_id=info:doi/10.1109/ICIG.2011.101&rft_dat=%3Cieee_6IE%3E6005975%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769545417&rft.eisbn_list=0769545416&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6005975&rfr_iscdi=true |