Global Trajectory Construction across Multi-cameras via Graph Matching

Behavior analysis across multi-cameras becomes more and more popular with the rapid development of camera network in video surveillance. In this paper, we propose a novel unsupervised graph matching framework to associate trajectories across partially overlapping cameras. Firstly, trajectory extract...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xiaobin Zhu, Jing Liu, Jinqiao Wang, Wei Fu, Hanqing Lu, Yikai Fang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 806
container_issue
container_start_page 801
container_title
container_volume
creator Xiaobin Zhu
Jing Liu
Jinqiao Wang
Wei Fu
Hanqing Lu
Yikai Fang
description Behavior analysis across multi-cameras becomes more and more popular with the rapid development of camera network in video surveillance. In this paper, we propose a novel unsupervised graph matching framework to associate trajectories across partially overlapping cameras. Firstly, trajectory extraction is based on object extraction and tracking and is followed by a homographic projection to a mosaic-plane. And we extract appearance and spatio-temporal features for trajectory description. Then a robust graph matching algorithm based on reweighted random walk is adopted for trajectory association. The association is formulated as node ranking and selection on an association graph whose nodes represent candidate correspondences of trajectories. Finally, the pairs of corresponding trajectories in overlapping regions are fused by an adaptive averaging scheme, in which trajectories with more observations and longer length is given higher weight. Experiments and comparison on real scenarios demonstrate the effectiveness of the proposed approach.
doi_str_mv 10.1109/ICIG.2011.101
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6005975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6005975</ieee_id><sourcerecordid>6005975</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-ad2443190e3749ea65ee56e4799df5f00b44518c1518580242c81bee2ee6c8bc3</originalsourceid><addsrcrecordid>eNotj81Kw0AURkdEUGuWrtzMCyTem8xPZinBpoEWN9mXyfTGTkmTMpMKfXsD-i3O2R34GHtFyBDBvDdVU2c5IGYIeMcSo0vQykghBep79oxCao1SATyyJMYTLFPK5IhPbF0PU2cH3gZ7IjdP4caraYxzuLrZTyO3Lkwx8t11mH3q7JmCjfzHW14HeznynZ3d0Y_fL-yht0Ok5N8r1q4_22qTbr_qpvrYpt7AnNpDLkSBBqjQwpBVkkgqEtqYQy97gE4IiaXDBbKEXOSuxI4oJ1Ku7FyxYm9_WU9E-0vwZxtu--WYNFoWv4rsSzU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Global Trajectory Construction across Multi-cameras via Graph Matching</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xiaobin Zhu ; Jing Liu ; Jinqiao Wang ; Wei Fu ; Hanqing Lu ; Yikai Fang</creator><creatorcontrib>Xiaobin Zhu ; Jing Liu ; Jinqiao Wang ; Wei Fu ; Hanqing Lu ; Yikai Fang</creatorcontrib><description>Behavior analysis across multi-cameras becomes more and more popular with the rapid development of camera network in video surveillance. In this paper, we propose a novel unsupervised graph matching framework to associate trajectories across partially overlapping cameras. Firstly, trajectory extraction is based on object extraction and tracking and is followed by a homographic projection to a mosaic-plane. And we extract appearance and spatio-temporal features for trajectory description. Then a robust graph matching algorithm based on reweighted random walk is adopted for trajectory association. The association is formulated as node ranking and selection on an association graph whose nodes represent candidate correspondences of trajectories. Finally, the pairs of corresponding trajectories in overlapping regions are fused by an adaptive averaging scheme, in which trajectories with more observations and longer length is given higher weight. Experiments and comparison on real scenarios demonstrate the effectiveness of the proposed approach.</description><identifier>ISBN: 1457715600</identifier><identifier>ISBN: 9781457715600</identifier><identifier>EISBN: 9780769545417</identifier><identifier>EISBN: 0769545416</identifier><identifier>DOI: 10.1109/ICIG.2011.101</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bipartite graph ; camera-network ; Cameras ; Feature extraction ; fusion ; Geometry ; graph matching ; Noise ; reweighted random walk ; Robustness ; Trajectory ; trajectory association ; trajectory projection</subject><ispartof>2011 Sixth International Conference on Image and Graphics, 2011, p.801-806</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6005975$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6005975$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiaobin Zhu</creatorcontrib><creatorcontrib>Jing Liu</creatorcontrib><creatorcontrib>Jinqiao Wang</creatorcontrib><creatorcontrib>Wei Fu</creatorcontrib><creatorcontrib>Hanqing Lu</creatorcontrib><creatorcontrib>Yikai Fang</creatorcontrib><title>Global Trajectory Construction across Multi-cameras via Graph Matching</title><title>2011 Sixth International Conference on Image and Graphics</title><addtitle>icig</addtitle><description>Behavior analysis across multi-cameras becomes more and more popular with the rapid development of camera network in video surveillance. In this paper, we propose a novel unsupervised graph matching framework to associate trajectories across partially overlapping cameras. Firstly, trajectory extraction is based on object extraction and tracking and is followed by a homographic projection to a mosaic-plane. And we extract appearance and spatio-temporal features for trajectory description. Then a robust graph matching algorithm based on reweighted random walk is adopted for trajectory association. The association is formulated as node ranking and selection on an association graph whose nodes represent candidate correspondences of trajectories. Finally, the pairs of corresponding trajectories in overlapping regions are fused by an adaptive averaging scheme, in which trajectories with more observations and longer length is given higher weight. Experiments and comparison on real scenarios demonstrate the effectiveness of the proposed approach.</description><subject>Bipartite graph</subject><subject>camera-network</subject><subject>Cameras</subject><subject>Feature extraction</subject><subject>fusion</subject><subject>Geometry</subject><subject>graph matching</subject><subject>Noise</subject><subject>reweighted random walk</subject><subject>Robustness</subject><subject>Trajectory</subject><subject>trajectory association</subject><subject>trajectory projection</subject><isbn>1457715600</isbn><isbn>9781457715600</isbn><isbn>9780769545417</isbn><isbn>0769545416</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81Kw0AURkdEUGuWrtzMCyTem8xPZinBpoEWN9mXyfTGTkmTMpMKfXsD-i3O2R34GHtFyBDBvDdVU2c5IGYIeMcSo0vQykghBep79oxCao1SATyyJMYTLFPK5IhPbF0PU2cH3gZ7IjdP4caraYxzuLrZTyO3Lkwx8t11mH3q7JmCjfzHW14HeznynZ3d0Y_fL-yht0Ok5N8r1q4_22qTbr_qpvrYpt7AnNpDLkSBBqjQwpBVkkgqEtqYQy97gE4IiaXDBbKEXOSuxI4oJ1Ku7FyxYm9_WU9E-0vwZxtu--WYNFoWv4rsSzU</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>Xiaobin Zhu</creator><creator>Jing Liu</creator><creator>Jinqiao Wang</creator><creator>Wei Fu</creator><creator>Hanqing Lu</creator><creator>Yikai Fang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201108</creationdate><title>Global Trajectory Construction across Multi-cameras via Graph Matching</title><author>Xiaobin Zhu ; Jing Liu ; Jinqiao Wang ; Wei Fu ; Hanqing Lu ; Yikai Fang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-ad2443190e3749ea65ee56e4799df5f00b44518c1518580242c81bee2ee6c8bc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bipartite graph</topic><topic>camera-network</topic><topic>Cameras</topic><topic>Feature extraction</topic><topic>fusion</topic><topic>Geometry</topic><topic>graph matching</topic><topic>Noise</topic><topic>reweighted random walk</topic><topic>Robustness</topic><topic>Trajectory</topic><topic>trajectory association</topic><topic>trajectory projection</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiaobin Zhu</creatorcontrib><creatorcontrib>Jing Liu</creatorcontrib><creatorcontrib>Jinqiao Wang</creatorcontrib><creatorcontrib>Wei Fu</creatorcontrib><creatorcontrib>Hanqing Lu</creatorcontrib><creatorcontrib>Yikai Fang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiaobin Zhu</au><au>Jing Liu</au><au>Jinqiao Wang</au><au>Wei Fu</au><au>Hanqing Lu</au><au>Yikai Fang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Global Trajectory Construction across Multi-cameras via Graph Matching</atitle><btitle>2011 Sixth International Conference on Image and Graphics</btitle><stitle>icig</stitle><date>2011-08</date><risdate>2011</risdate><spage>801</spage><epage>806</epage><pages>801-806</pages><isbn>1457715600</isbn><isbn>9781457715600</isbn><eisbn>9780769545417</eisbn><eisbn>0769545416</eisbn><abstract>Behavior analysis across multi-cameras becomes more and more popular with the rapid development of camera network in video surveillance. In this paper, we propose a novel unsupervised graph matching framework to associate trajectories across partially overlapping cameras. Firstly, trajectory extraction is based on object extraction and tracking and is followed by a homographic projection to a mosaic-plane. And we extract appearance and spatio-temporal features for trajectory description. Then a robust graph matching algorithm based on reweighted random walk is adopted for trajectory association. The association is formulated as node ranking and selection on an association graph whose nodes represent candidate correspondences of trajectories. Finally, the pairs of corresponding trajectories in overlapping regions are fused by an adaptive averaging scheme, in which trajectories with more observations and longer length is given higher weight. Experiments and comparison on real scenarios demonstrate the effectiveness of the proposed approach.</abstract><pub>IEEE</pub><doi>10.1109/ICIG.2011.101</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1457715600
ispartof 2011 Sixth International Conference on Image and Graphics, 2011, p.801-806
issn
language eng
recordid cdi_ieee_primary_6005975
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bipartite graph
camera-network
Cameras
Feature extraction
fusion
Geometry
graph matching
Noise
reweighted random walk
Robustness
Trajectory
trajectory association
trajectory projection
title Global Trajectory Construction across Multi-cameras via Graph Matching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T16%3A10%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Global%20Trajectory%20Construction%20across%20Multi-cameras%20via%20Graph%20Matching&rft.btitle=2011%20Sixth%20International%20Conference%20on%20Image%20and%20Graphics&rft.au=Xiaobin%20Zhu&rft.date=2011-08&rft.spage=801&rft.epage=806&rft.pages=801-806&rft.isbn=1457715600&rft.isbn_list=9781457715600&rft_id=info:doi/10.1109/ICIG.2011.101&rft_dat=%3Cieee_6IE%3E6005975%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9780769545417&rft.eisbn_list=0769545416&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6005975&rfr_iscdi=true