Identification of grazed and mown grasslands using a time series of high-spatial-resolution remote sensing images
In many regions, a decrease of grasslands and change in their management can be observed with agriculture intensification. Hence, the evaluation of grassland status and management in farming systems is a key-issue for sustainable agriculture. However, inventory of grassland surfaces in agricultural...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 148 |
---|---|
container_issue | |
container_start_page | 145 |
container_title | |
container_volume | |
creator | Dusseux, P. Hubert-Moy, L. Lecerf, R. Xing Gong Corpetti, T. |
description | In many regions, a decrease of grasslands and change in their management can be observed with agriculture intensification. Hence, the evaluation of grassland status and management in farming systems is a key-issue for sustainable agriculture. However, inventory of grassland surfaces in agricultural areas is very incomplete and the spatiotemporal distribution of their management is still largely unknown. The objective of this study is to identify mown and grazed grasslands from a time series of high spatial resolution images acquired in 2006 on an experimental watershed located in Brittany, France. The coupling of two radiative transfer models (PROSPECT+SAIL) has been applied to the remote sensing images to derive biophysical variables, in order to identify grassland management. Then, based on training samples, the classification of the temporal profiles extracted from the images was performed using three different methods with increasing automation: a knowledge-based classification, a k-nearest neighborhood and a decision tree procedure. |
doi_str_mv | 10.1109/Multi-Temp.2011.6005069 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6005069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6005069</ieee_id><sourcerecordid>6005069</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-841a094a32150d45b23e4960eb68fe4aeafc632d12e4a6f0f65173b015c407b73</originalsourceid><addsrcrecordid>eNpFkN1KxDAQRiMiqOs-gRfmBVpnkjRtL2VRd2HFm94vaTvpRvpn0yL69LbrgnMzHPi-MzCMPSCEiJA-vk316IKMmj4UgBhqgAh0esFuUUVxjAKkuPwHoa7Z2vsPmEeLOMHkhn3uSmpHZ11hRte1vLO8GswPldy0JW-6r3Zh7-sZPZ-8aytu-Oga4p4GR35pHF11DHw_G0wdDOS7ejrJBmq6cQm2p55rTEX-jl1ZU3tan_eKZS_P2WYb7N9fd5unfeBSGINEoYFUGSkwglJFuZCkUg2U68SSMmRsoaUoUcygLVgdYSxzwKhQEOexXLH7P60jokM_zMeH78P5Q_IXooZeYQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Identification of grazed and mown grasslands using a time series of high-spatial-resolution remote sensing images</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dusseux, P. ; Hubert-Moy, L. ; Lecerf, R. ; Xing Gong ; Corpetti, T.</creator><creatorcontrib>Dusseux, P. ; Hubert-Moy, L. ; Lecerf, R. ; Xing Gong ; Corpetti, T.</creatorcontrib><description>In many regions, a decrease of grasslands and change in their management can be observed with agriculture intensification. Hence, the evaluation of grassland status and management in farming systems is a key-issue for sustainable agriculture. However, inventory of grassland surfaces in agricultural areas is very incomplete and the spatiotemporal distribution of their management is still largely unknown. The objective of this study is to identify mown and grazed grasslands from a time series of high spatial resolution images acquired in 2006 on an experimental watershed located in Brittany, France. The coupling of two radiative transfer models (PROSPECT+SAIL) has been applied to the remote sensing images to derive biophysical variables, in order to identify grassland management. Then, based on training samples, the classification of the temporal profiles extracted from the images was performed using three different methods with increasing automation: a knowledge-based classification, a k-nearest neighborhood and a decision tree procedure.</description><identifier>ISBN: 1457712024</identifier><identifier>ISBN: 9781457712029</identifier><identifier>EISBN: 1457712032</identifier><identifier>EISBN: 9781457712012</identifier><identifier>EISBN: 1457712016</identifier><identifier>EISBN: 9781457712036</identifier><identifier>DOI: 10.1109/Multi-Temp.2011.6005069</identifier><language>eng</language><publisher>IEEE</publisher><subject>Agriculture ; Biological system modeling ; Biophysical variables ; Meadow ; Monitoring ; Multi-temporal analysis ; Remote sensing ; Satellite images ; Spatial resolution ; Time series analysis ; Vegetation mapping</subject><ispartof>2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp), 2011, p.145-148</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6005069$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6005069$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dusseux, P.</creatorcontrib><creatorcontrib>Hubert-Moy, L.</creatorcontrib><creatorcontrib>Lecerf, R.</creatorcontrib><creatorcontrib>Xing Gong</creatorcontrib><creatorcontrib>Corpetti, T.</creatorcontrib><title>Identification of grazed and mown grasslands using a time series of high-spatial-resolution remote sensing images</title><title>2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)</title><addtitle>Multi-Temp</addtitle><description>In many regions, a decrease of grasslands and change in their management can be observed with agriculture intensification. Hence, the evaluation of grassland status and management in farming systems is a key-issue for sustainable agriculture. However, inventory of grassland surfaces in agricultural areas is very incomplete and the spatiotemporal distribution of their management is still largely unknown. The objective of this study is to identify mown and grazed grasslands from a time series of high spatial resolution images acquired in 2006 on an experimental watershed located in Brittany, France. The coupling of two radiative transfer models (PROSPECT+SAIL) has been applied to the remote sensing images to derive biophysical variables, in order to identify grassland management. Then, based on training samples, the classification of the temporal profiles extracted from the images was performed using three different methods with increasing automation: a knowledge-based classification, a k-nearest neighborhood and a decision tree procedure.</description><subject>Agriculture</subject><subject>Biological system modeling</subject><subject>Biophysical variables</subject><subject>Meadow</subject><subject>Monitoring</subject><subject>Multi-temporal analysis</subject><subject>Remote sensing</subject><subject>Satellite images</subject><subject>Spatial resolution</subject><subject>Time series analysis</subject><subject>Vegetation mapping</subject><isbn>1457712024</isbn><isbn>9781457712029</isbn><isbn>1457712032</isbn><isbn>9781457712012</isbn><isbn>1457712016</isbn><isbn>9781457712036</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkN1KxDAQRiMiqOs-gRfmBVpnkjRtL2VRd2HFm94vaTvpRvpn0yL69LbrgnMzHPi-MzCMPSCEiJA-vk316IKMmj4UgBhqgAh0esFuUUVxjAKkuPwHoa7Z2vsPmEeLOMHkhn3uSmpHZ11hRte1vLO8GswPldy0JW-6r3Zh7-sZPZ-8aytu-Oga4p4GR35pHF11DHw_G0wdDOS7ejrJBmq6cQm2p55rTEX-jl1ZU3tan_eKZS_P2WYb7N9fd5unfeBSGINEoYFUGSkwglJFuZCkUg2U68SSMmRsoaUoUcygLVgdYSxzwKhQEOexXLH7P60jokM_zMeH78P5Q_IXooZeYQ</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Dusseux, P.</creator><creator>Hubert-Moy, L.</creator><creator>Lecerf, R.</creator><creator>Xing Gong</creator><creator>Corpetti, T.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201107</creationdate><title>Identification of grazed and mown grasslands using a time series of high-spatial-resolution remote sensing images</title><author>Dusseux, P. ; Hubert-Moy, L. ; Lecerf, R. ; Xing Gong ; Corpetti, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-841a094a32150d45b23e4960eb68fe4aeafc632d12e4a6f0f65173b015c407b73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Agriculture</topic><topic>Biological system modeling</topic><topic>Biophysical variables</topic><topic>Meadow</topic><topic>Monitoring</topic><topic>Multi-temporal analysis</topic><topic>Remote sensing</topic><topic>Satellite images</topic><topic>Spatial resolution</topic><topic>Time series analysis</topic><topic>Vegetation mapping</topic><toplevel>online_resources</toplevel><creatorcontrib>Dusseux, P.</creatorcontrib><creatorcontrib>Hubert-Moy, L.</creatorcontrib><creatorcontrib>Lecerf, R.</creatorcontrib><creatorcontrib>Xing Gong</creatorcontrib><creatorcontrib>Corpetti, T.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dusseux, P.</au><au>Hubert-Moy, L.</au><au>Lecerf, R.</au><au>Xing Gong</au><au>Corpetti, T.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Identification of grazed and mown grasslands using a time series of high-spatial-resolution remote sensing images</atitle><btitle>2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)</btitle><stitle>Multi-Temp</stitle><date>2011-07</date><risdate>2011</risdate><spage>145</spage><epage>148</epage><pages>145-148</pages><isbn>1457712024</isbn><isbn>9781457712029</isbn><eisbn>1457712032</eisbn><eisbn>9781457712012</eisbn><eisbn>1457712016</eisbn><eisbn>9781457712036</eisbn><abstract>In many regions, a decrease of grasslands and change in their management can be observed with agriculture intensification. Hence, the evaluation of grassland status and management in farming systems is a key-issue for sustainable agriculture. However, inventory of grassland surfaces in agricultural areas is very incomplete and the spatiotemporal distribution of their management is still largely unknown. The objective of this study is to identify mown and grazed grasslands from a time series of high spatial resolution images acquired in 2006 on an experimental watershed located in Brittany, France. The coupling of two radiative transfer models (PROSPECT+SAIL) has been applied to the remote sensing images to derive biophysical variables, in order to identify grassland management. Then, based on training samples, the classification of the temporal profiles extracted from the images was performed using three different methods with increasing automation: a knowledge-based classification, a k-nearest neighborhood and a decision tree procedure.</abstract><pub>IEEE</pub><doi>10.1109/Multi-Temp.2011.6005069</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1457712024 |
ispartof | 2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp), 2011, p.145-148 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6005069 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Agriculture Biological system modeling Biophysical variables Meadow Monitoring Multi-temporal analysis Remote sensing Satellite images Spatial resolution Time series analysis Vegetation mapping |
title | Identification of grazed and mown grasslands using a time series of high-spatial-resolution remote sensing images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A52%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Identification%20of%20grazed%20and%20mown%20grasslands%20using%20a%20time%20series%20of%20high-spatial-resolution%20remote%20sensing%20images&rft.btitle=2011%206th%20International%20Workshop%20on%20the%20Analysis%20of%20Multi-temporal%20Remote%20Sensing%20Images%20(Multi-Temp)&rft.au=Dusseux,%20P.&rft.date=2011-07&rft.spage=145&rft.epage=148&rft.pages=145-148&rft.isbn=1457712024&rft.isbn_list=9781457712029&rft_id=info:doi/10.1109/Multi-Temp.2011.6005069&rft_dat=%3Cieee_6IE%3E6005069%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457712032&rft.eisbn_list=9781457712012&rft.eisbn_list=1457712016&rft.eisbn_list=9781457712036&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6005069&rfr_iscdi=true |