Identification of grazed and mown grasslands using a time series of high-spatial-resolution remote sensing images

In many regions, a decrease of grasslands and change in their management can be observed with agriculture intensification. Hence, the evaluation of grassland status and management in farming systems is a key-issue for sustainable agriculture. However, inventory of grassland surfaces in agricultural...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dusseux, P., Hubert-Moy, L., Lecerf, R., Xing Gong, Corpetti, T.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 148
container_issue
container_start_page 145
container_title
container_volume
creator Dusseux, P.
Hubert-Moy, L.
Lecerf, R.
Xing Gong
Corpetti, T.
description In many regions, a decrease of grasslands and change in their management can be observed with agriculture intensification. Hence, the evaluation of grassland status and management in farming systems is a key-issue for sustainable agriculture. However, inventory of grassland surfaces in agricultural areas is very incomplete and the spatiotemporal distribution of their management is still largely unknown. The objective of this study is to identify mown and grazed grasslands from a time series of high spatial resolution images acquired in 2006 on an experimental watershed located in Brittany, France. The coupling of two radiative transfer models (PROSPECT+SAIL) has been applied to the remote sensing images to derive biophysical variables, in order to identify grassland management. Then, based on training samples, the classification of the temporal profiles extracted from the images was performed using three different methods with increasing automation: a knowledge-based classification, a k-nearest neighborhood and a decision tree procedure.
doi_str_mv 10.1109/Multi-Temp.2011.6005069
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6005069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6005069</ieee_id><sourcerecordid>6005069</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-841a094a32150d45b23e4960eb68fe4aeafc632d12e4a6f0f65173b015c407b73</originalsourceid><addsrcrecordid>eNpFkN1KxDAQRiMiqOs-gRfmBVpnkjRtL2VRd2HFm94vaTvpRvpn0yL69LbrgnMzHPi-MzCMPSCEiJA-vk316IKMmj4UgBhqgAh0esFuUUVxjAKkuPwHoa7Z2vsPmEeLOMHkhn3uSmpHZ11hRte1vLO8GswPldy0JW-6r3Zh7-sZPZ-8aytu-Oga4p4GR35pHF11DHw_G0wdDOS7ejrJBmq6cQm2p55rTEX-jl1ZU3tan_eKZS_P2WYb7N9fd5unfeBSGINEoYFUGSkwglJFuZCkUg2U68SSMmRsoaUoUcygLVgdYSxzwKhQEOexXLH7P60jokM_zMeH78P5Q_IXooZeYQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Identification of grazed and mown grasslands using a time series of high-spatial-resolution remote sensing images</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dusseux, P. ; Hubert-Moy, L. ; Lecerf, R. ; Xing Gong ; Corpetti, T.</creator><creatorcontrib>Dusseux, P. ; Hubert-Moy, L. ; Lecerf, R. ; Xing Gong ; Corpetti, T.</creatorcontrib><description>In many regions, a decrease of grasslands and change in their management can be observed with agriculture intensification. Hence, the evaluation of grassland status and management in farming systems is a key-issue for sustainable agriculture. However, inventory of grassland surfaces in agricultural areas is very incomplete and the spatiotemporal distribution of their management is still largely unknown. The objective of this study is to identify mown and grazed grasslands from a time series of high spatial resolution images acquired in 2006 on an experimental watershed located in Brittany, France. The coupling of two radiative transfer models (PROSPECT+SAIL) has been applied to the remote sensing images to derive biophysical variables, in order to identify grassland management. Then, based on training samples, the classification of the temporal profiles extracted from the images was performed using three different methods with increasing automation: a knowledge-based classification, a k-nearest neighborhood and a decision tree procedure.</description><identifier>ISBN: 1457712024</identifier><identifier>ISBN: 9781457712029</identifier><identifier>EISBN: 1457712032</identifier><identifier>EISBN: 9781457712012</identifier><identifier>EISBN: 1457712016</identifier><identifier>EISBN: 9781457712036</identifier><identifier>DOI: 10.1109/Multi-Temp.2011.6005069</identifier><language>eng</language><publisher>IEEE</publisher><subject>Agriculture ; Biological system modeling ; Biophysical variables ; Meadow ; Monitoring ; Multi-temporal analysis ; Remote sensing ; Satellite images ; Spatial resolution ; Time series analysis ; Vegetation mapping</subject><ispartof>2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp), 2011, p.145-148</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6005069$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6005069$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dusseux, P.</creatorcontrib><creatorcontrib>Hubert-Moy, L.</creatorcontrib><creatorcontrib>Lecerf, R.</creatorcontrib><creatorcontrib>Xing Gong</creatorcontrib><creatorcontrib>Corpetti, T.</creatorcontrib><title>Identification of grazed and mown grasslands using a time series of high-spatial-resolution remote sensing images</title><title>2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)</title><addtitle>Multi-Temp</addtitle><description>In many regions, a decrease of grasslands and change in their management can be observed with agriculture intensification. Hence, the evaluation of grassland status and management in farming systems is a key-issue for sustainable agriculture. However, inventory of grassland surfaces in agricultural areas is very incomplete and the spatiotemporal distribution of their management is still largely unknown. The objective of this study is to identify mown and grazed grasslands from a time series of high spatial resolution images acquired in 2006 on an experimental watershed located in Brittany, France. The coupling of two radiative transfer models (PROSPECT+SAIL) has been applied to the remote sensing images to derive biophysical variables, in order to identify grassland management. Then, based on training samples, the classification of the temporal profiles extracted from the images was performed using three different methods with increasing automation: a knowledge-based classification, a k-nearest neighborhood and a decision tree procedure.</description><subject>Agriculture</subject><subject>Biological system modeling</subject><subject>Biophysical variables</subject><subject>Meadow</subject><subject>Monitoring</subject><subject>Multi-temporal analysis</subject><subject>Remote sensing</subject><subject>Satellite images</subject><subject>Spatial resolution</subject><subject>Time series analysis</subject><subject>Vegetation mapping</subject><isbn>1457712024</isbn><isbn>9781457712029</isbn><isbn>1457712032</isbn><isbn>9781457712012</isbn><isbn>1457712016</isbn><isbn>9781457712036</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkN1KxDAQRiMiqOs-gRfmBVpnkjRtL2VRd2HFm94vaTvpRvpn0yL69LbrgnMzHPi-MzCMPSCEiJA-vk316IKMmj4UgBhqgAh0esFuUUVxjAKkuPwHoa7Z2vsPmEeLOMHkhn3uSmpHZ11hRte1vLO8GswPldy0JW-6r3Zh7-sZPZ-8aytu-Oga4p4GR35pHF11DHw_G0wdDOS7ejrJBmq6cQm2p55rTEX-jl1ZU3tan_eKZS_P2WYb7N9fd5unfeBSGINEoYFUGSkwglJFuZCkUg2U68SSMmRsoaUoUcygLVgdYSxzwKhQEOexXLH7P60jokM_zMeH78P5Q_IXooZeYQ</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Dusseux, P.</creator><creator>Hubert-Moy, L.</creator><creator>Lecerf, R.</creator><creator>Xing Gong</creator><creator>Corpetti, T.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201107</creationdate><title>Identification of grazed and mown grasslands using a time series of high-spatial-resolution remote sensing images</title><author>Dusseux, P. ; Hubert-Moy, L. ; Lecerf, R. ; Xing Gong ; Corpetti, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-841a094a32150d45b23e4960eb68fe4aeafc632d12e4a6f0f65173b015c407b73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Agriculture</topic><topic>Biological system modeling</topic><topic>Biophysical variables</topic><topic>Meadow</topic><topic>Monitoring</topic><topic>Multi-temporal analysis</topic><topic>Remote sensing</topic><topic>Satellite images</topic><topic>Spatial resolution</topic><topic>Time series analysis</topic><topic>Vegetation mapping</topic><toplevel>online_resources</toplevel><creatorcontrib>Dusseux, P.</creatorcontrib><creatorcontrib>Hubert-Moy, L.</creatorcontrib><creatorcontrib>Lecerf, R.</creatorcontrib><creatorcontrib>Xing Gong</creatorcontrib><creatorcontrib>Corpetti, T.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dusseux, P.</au><au>Hubert-Moy, L.</au><au>Lecerf, R.</au><au>Xing Gong</au><au>Corpetti, T.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Identification of grazed and mown grasslands using a time series of high-spatial-resolution remote sensing images</atitle><btitle>2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)</btitle><stitle>Multi-Temp</stitle><date>2011-07</date><risdate>2011</risdate><spage>145</spage><epage>148</epage><pages>145-148</pages><isbn>1457712024</isbn><isbn>9781457712029</isbn><eisbn>1457712032</eisbn><eisbn>9781457712012</eisbn><eisbn>1457712016</eisbn><eisbn>9781457712036</eisbn><abstract>In many regions, a decrease of grasslands and change in their management can be observed with agriculture intensification. Hence, the evaluation of grassland status and management in farming systems is a key-issue for sustainable agriculture. However, inventory of grassland surfaces in agricultural areas is very incomplete and the spatiotemporal distribution of their management is still largely unknown. The objective of this study is to identify mown and grazed grasslands from a time series of high spatial resolution images acquired in 2006 on an experimental watershed located in Brittany, France. The coupling of two radiative transfer models (PROSPECT+SAIL) has been applied to the remote sensing images to derive biophysical variables, in order to identify grassland management. Then, based on training samples, the classification of the temporal profiles extracted from the images was performed using three different methods with increasing automation: a knowledge-based classification, a k-nearest neighborhood and a decision tree procedure.</abstract><pub>IEEE</pub><doi>10.1109/Multi-Temp.2011.6005069</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1457712024
ispartof 2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp), 2011, p.145-148
issn
language eng
recordid cdi_ieee_primary_6005069
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Agriculture
Biological system modeling
Biophysical variables
Meadow
Monitoring
Multi-temporal analysis
Remote sensing
Satellite images
Spatial resolution
Time series analysis
Vegetation mapping
title Identification of grazed and mown grasslands using a time series of high-spatial-resolution remote sensing images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A52%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Identification%20of%20grazed%20and%20mown%20grasslands%20using%20a%20time%20series%20of%20high-spatial-resolution%20remote%20sensing%20images&rft.btitle=2011%206th%20International%20Workshop%20on%20the%20Analysis%20of%20Multi-temporal%20Remote%20Sensing%20Images%20(Multi-Temp)&rft.au=Dusseux,%20P.&rft.date=2011-07&rft.spage=145&rft.epage=148&rft.pages=145-148&rft.isbn=1457712024&rft.isbn_list=9781457712029&rft_id=info:doi/10.1109/Multi-Temp.2011.6005069&rft_dat=%3Cieee_6IE%3E6005069%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457712032&rft.eisbn_list=9781457712012&rft.eisbn_list=1457712016&rft.eisbn_list=9781457712036&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6005069&rfr_iscdi=true