In Situ Tuning of Focused-Ion-Beam Defined Nanomechanical Resonators Using Joule Heating
Nanomechanical resonators have a huge potential for a variety of applications, including high-resolution mass sensing. In this paper, we demonstrate a novel rapid prototyping method for fabricating nanoelectromechanical systems using focused-ion-beam milling as well as in situ electromechanical char...
Gespeichert in:
Veröffentlicht in: | Journal of microelectromechanical systems 2011-10, Vol.20 (5), p.1074-1080 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1080 |
---|---|
container_issue | 5 |
container_start_page | 1074 |
container_title | Journal of microelectromechanical systems |
container_volume | 20 |
creator | Homann, L. V. Booth, T. Lei, A. Petersen, D. H. Davis, Z. J. Boggild, P. |
description | Nanomechanical resonators have a huge potential for a variety of applications, including high-resolution mass sensing. In this paper, we demonstrate a novel rapid prototyping method for fabricating nanoelectromechanical systems using focused-ion-beam milling as well as in situ electromechanical characterization using a transmission electron microscope. Nanomechanical resonators were cut out of thin membrane chips, which have been prefabricated using standard cleanroom processing. We have demonstrated the fabrication of double-clamped beams with feature sizes down to 200 nm using a fabrication time of 30 min per device. Afterwards, the dynamic and structural properties of a double-clamped beam were measured after subsequent Joule heating events in order to ascertain the dependence of the internal structure on the Q-factor and resonant frequency of the device. It was observed that a change from amorphous to polycrystalline silicon structure significantly increased the resonant frequency as well as the Q-factor of the nanomechanical resonator. Aside from allowing detailed studies of the correlation between internal structure and nanomechanical behavior on an individual rather than a statistical basis, the combination of a short turnaround time and in situ nonlithographic tuning of the properties provide a flexible approach to the development and prototyping of nanomechanical devices. |
doi_str_mv | 10.1109/JMEMS.2011.2163300 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6004800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6004800</ieee_id><sourcerecordid>2550359611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-a41cd8dee85bf2b846447bbb9b5b569bfba45f1496908876c245fc9f180fefe53</originalsourceid><addsrcrecordid>eNpdkEtrGzEURofQQtIkfyDdiELpahzd0WOkZZtH4-A0kAd0JyT5qp0wlpzRzKL_vnJsvMjq3ovO9yFOVZ0BnQFQfX57d3X3OGsowKwByRilB9URaA41BaE-lJ2Ktm5BtIfVp5xfKAXOlTyqfs8jeezGiTxNsYt_SArkOvkp47Kep1j_QLsilxi6iEvyy8a0Qv_Xxs7bnjxgTtGOacjkOW-yt2nqkdygHct1Un0Mts94upvH1fP11dPFTb24_zm_-L6oPRNyrC0Hv1RLRCVcaJzikvPWOaedcEJqF5zlIgDXUlOlWumbcnodQNGAAQU7rr5te9dDep0wj2bVZY99byOmKRvdSAaaCijkl3fkS5qGWD5nNDBgjCtWoGYL-SHlPGAw66Fb2eGfAWo2qs2barNRbXaqS-jrrtnmYiYMNvou75MNl1QKzgv3ect1iLh_lpRyVVr-A2nhhow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>913133483</pqid></control><display><type>article</type><title>In Situ Tuning of Focused-Ion-Beam Defined Nanomechanical Resonators Using Joule Heating</title><source>IEEE Electronic Library (IEL)</source><creator>Homann, L. V. ; Booth, T. ; Lei, A. ; Petersen, D. H. ; Davis, Z. J. ; Boggild, P.</creator><creatorcontrib>Homann, L. V. ; Booth, T. ; Lei, A. ; Petersen, D. H. ; Davis, Z. J. ; Boggild, P.</creatorcontrib><description>Nanomechanical resonators have a huge potential for a variety of applications, including high-resolution mass sensing. In this paper, we demonstrate a novel rapid prototyping method for fabricating nanoelectromechanical systems using focused-ion-beam milling as well as in situ electromechanical characterization using a transmission electron microscope. Nanomechanical resonators were cut out of thin membrane chips, which have been prefabricated using standard cleanroom processing. We have demonstrated the fabrication of double-clamped beams with feature sizes down to 200 nm using a fabrication time of 30 min per device. Afterwards, the dynamic and structural properties of a double-clamped beam were measured after subsequent Joule heating events in order to ascertain the dependence of the internal structure on the Q-factor and resonant frequency of the device. It was observed that a change from amorphous to polycrystalline silicon structure significantly increased the resonant frequency as well as the Q-factor of the nanomechanical resonator. Aside from allowing detailed studies of the correlation between internal structure and nanomechanical behavior on an individual rather than a statistical basis, the combination of a short turnaround time and in situ nonlithographic tuning of the properties provide a flexible approach to the development and prototyping of nanomechanical devices.</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2011.2163300</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Annealing ; Cross-disciplinary physics: materials science; rheology ; Devices ; Exact sciences and technology ; Focused ion beam ; Heating ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Materials science ; Mechanical instruments, equipment and techniques ; Methods of nanofabrication ; Micromechanical devices and systems ; Milling ; Nanocomposites ; nanoelectromechancial systems ; Nanoelectromechanical systems ; nanofabrication ; nanolithography ; Nanomaterials ; nanopatterning ; Nanostructure ; nanotechnology ; Physics ; Q factor ; Rapid prototyping ; Resistance ; Resonant frequencies ; Resonant frequency ; Resonators ; Silicon ; transmission electron microscopy ; Tuning</subject><ispartof>Journal of microelectromechanical systems, 2011-10, Vol.20 (5), p.1074-1080</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-a41cd8dee85bf2b846447bbb9b5b569bfba45f1496908876c245fc9f180fefe53</citedby><cites>FETCH-LOGICAL-c356t-a41cd8dee85bf2b846447bbb9b5b569bfba45f1496908876c245fc9f180fefe53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6004800$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6004800$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24606544$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Homann, L. V.</creatorcontrib><creatorcontrib>Booth, T.</creatorcontrib><creatorcontrib>Lei, A.</creatorcontrib><creatorcontrib>Petersen, D. H.</creatorcontrib><creatorcontrib>Davis, Z. J.</creatorcontrib><creatorcontrib>Boggild, P.</creatorcontrib><title>In Situ Tuning of Focused-Ion-Beam Defined Nanomechanical Resonators Using Joule Heating</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>Nanomechanical resonators have a huge potential for a variety of applications, including high-resolution mass sensing. In this paper, we demonstrate a novel rapid prototyping method for fabricating nanoelectromechanical systems using focused-ion-beam milling as well as in situ electromechanical characterization using a transmission electron microscope. Nanomechanical resonators were cut out of thin membrane chips, which have been prefabricated using standard cleanroom processing. We have demonstrated the fabrication of double-clamped beams with feature sizes down to 200 nm using a fabrication time of 30 min per device. Afterwards, the dynamic and structural properties of a double-clamped beam were measured after subsequent Joule heating events in order to ascertain the dependence of the internal structure on the Q-factor and resonant frequency of the device. It was observed that a change from amorphous to polycrystalline silicon structure significantly increased the resonant frequency as well as the Q-factor of the nanomechanical resonator. Aside from allowing detailed studies of the correlation between internal structure and nanomechanical behavior on an individual rather than a statistical basis, the combination of a short turnaround time and in situ nonlithographic tuning of the properties provide a flexible approach to the development and prototyping of nanomechanical devices.</description><subject>Annealing</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Devices</subject><subject>Exact sciences and technology</subject><subject>Focused ion beam</subject><subject>Heating</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Materials science</subject><subject>Mechanical instruments, equipment and techniques</subject><subject>Methods of nanofabrication</subject><subject>Micromechanical devices and systems</subject><subject>Milling</subject><subject>Nanocomposites</subject><subject>nanoelectromechancial systems</subject><subject>Nanoelectromechanical systems</subject><subject>nanofabrication</subject><subject>nanolithography</subject><subject>Nanomaterials</subject><subject>nanopatterning</subject><subject>Nanostructure</subject><subject>nanotechnology</subject><subject>Physics</subject><subject>Q factor</subject><subject>Rapid prototyping</subject><subject>Resistance</subject><subject>Resonant frequencies</subject><subject>Resonant frequency</subject><subject>Resonators</subject><subject>Silicon</subject><subject>transmission electron microscopy</subject><subject>Tuning</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtrGzEURofQQtIkfyDdiELpahzd0WOkZZtH4-A0kAd0JyT5qp0wlpzRzKL_vnJsvMjq3ovO9yFOVZ0BnQFQfX57d3X3OGsowKwByRilB9URaA41BaE-lJ2Ktm5BtIfVp5xfKAXOlTyqfs8jeezGiTxNsYt_SArkOvkp47Kep1j_QLsilxi6iEvyy8a0Qv_Xxs7bnjxgTtGOacjkOW-yt2nqkdygHct1Un0Mts94upvH1fP11dPFTb24_zm_-L6oPRNyrC0Hv1RLRCVcaJzikvPWOaedcEJqF5zlIgDXUlOlWumbcnodQNGAAQU7rr5te9dDep0wj2bVZY99byOmKRvdSAaaCijkl3fkS5qGWD5nNDBgjCtWoGYL-SHlPGAw66Fb2eGfAWo2qs2barNRbXaqS-jrrtnmYiYMNvou75MNl1QKzgv3ect1iLh_lpRyVVr-A2nhhow</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Homann, L. V.</creator><creator>Booth, T.</creator><creator>Lei, A.</creator><creator>Petersen, D. H.</creator><creator>Davis, Z. J.</creator><creator>Boggild, P.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20111001</creationdate><title>In Situ Tuning of Focused-Ion-Beam Defined Nanomechanical Resonators Using Joule Heating</title><author>Homann, L. V. ; Booth, T. ; Lei, A. ; Petersen, D. H. ; Davis, Z. J. ; Boggild, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-a41cd8dee85bf2b846447bbb9b5b569bfba45f1496908876c245fc9f180fefe53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Annealing</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Devices</topic><topic>Exact sciences and technology</topic><topic>Focused ion beam</topic><topic>Heating</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Materials science</topic><topic>Mechanical instruments, equipment and techniques</topic><topic>Methods of nanofabrication</topic><topic>Micromechanical devices and systems</topic><topic>Milling</topic><topic>Nanocomposites</topic><topic>nanoelectromechancial systems</topic><topic>Nanoelectromechanical systems</topic><topic>nanofabrication</topic><topic>nanolithography</topic><topic>Nanomaterials</topic><topic>nanopatterning</topic><topic>Nanostructure</topic><topic>nanotechnology</topic><topic>Physics</topic><topic>Q factor</topic><topic>Rapid prototyping</topic><topic>Resistance</topic><topic>Resonant frequencies</topic><topic>Resonant frequency</topic><topic>Resonators</topic><topic>Silicon</topic><topic>transmission electron microscopy</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Homann, L. V.</creatorcontrib><creatorcontrib>Booth, T.</creatorcontrib><creatorcontrib>Lei, A.</creatorcontrib><creatorcontrib>Petersen, D. H.</creatorcontrib><creatorcontrib>Davis, Z. J.</creatorcontrib><creatorcontrib>Boggild, P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Homann, L. V.</au><au>Booth, T.</au><au>Lei, A.</au><au>Petersen, D. H.</au><au>Davis, Z. J.</au><au>Boggild, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Tuning of Focused-Ion-Beam Defined Nanomechanical Resonators Using Joule Heating</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2011-10-01</date><risdate>2011</risdate><volume>20</volume><issue>5</issue><spage>1074</spage><epage>1080</epage><pages>1074-1080</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>Nanomechanical resonators have a huge potential for a variety of applications, including high-resolution mass sensing. In this paper, we demonstrate a novel rapid prototyping method for fabricating nanoelectromechanical systems using focused-ion-beam milling as well as in situ electromechanical characterization using a transmission electron microscope. Nanomechanical resonators were cut out of thin membrane chips, which have been prefabricated using standard cleanroom processing. We have demonstrated the fabrication of double-clamped beams with feature sizes down to 200 nm using a fabrication time of 30 min per device. Afterwards, the dynamic and structural properties of a double-clamped beam were measured after subsequent Joule heating events in order to ascertain the dependence of the internal structure on the Q-factor and resonant frequency of the device. It was observed that a change from amorphous to polycrystalline silicon structure significantly increased the resonant frequency as well as the Q-factor of the nanomechanical resonator. Aside from allowing detailed studies of the correlation between internal structure and nanomechanical behavior on an individual rather than a statistical basis, the combination of a short turnaround time and in situ nonlithographic tuning of the properties provide a flexible approach to the development and prototyping of nanomechanical devices.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2011.2163300</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7157 |
ispartof | Journal of microelectromechanical systems, 2011-10, Vol.20 (5), p.1074-1080 |
issn | 1057-7157 1941-0158 |
language | eng |
recordid | cdi_ieee_primary_6004800 |
source | IEEE Electronic Library (IEL) |
subjects | Annealing Cross-disciplinary physics: materials science rheology Devices Exact sciences and technology Focused ion beam Heating Instruments, apparatus, components and techniques common to several branches of physics and astronomy Materials science Mechanical instruments, equipment and techniques Methods of nanofabrication Micromechanical devices and systems Milling Nanocomposites nanoelectromechancial systems Nanoelectromechanical systems nanofabrication nanolithography Nanomaterials nanopatterning Nanostructure nanotechnology Physics Q factor Rapid prototyping Resistance Resonant frequencies Resonant frequency Resonators Silicon transmission electron microscopy Tuning |
title | In Situ Tuning of Focused-Ion-Beam Defined Nanomechanical Resonators Using Joule Heating |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A01%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Tuning%20of%20Focused-Ion-Beam%20Defined%20Nanomechanical%20Resonators%20Using%20Joule%20Heating&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Homann,%20L.%20V.&rft.date=2011-10-01&rft.volume=20&rft.issue=5&rft.spage=1074&rft.epage=1080&rft.pages=1074-1080&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2011.2163300&rft_dat=%3Cproquest_RIE%3E2550359611%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=913133483&rft_id=info:pmid/&rft_ieee_id=6004800&rfr_iscdi=true |