In Situ Tuning of Focused-Ion-Beam Defined Nanomechanical Resonators Using Joule Heating

Nanomechanical resonators have a huge potential for a variety of applications, including high-resolution mass sensing. In this paper, we demonstrate a novel rapid prototyping method for fabricating nanoelectromechanical systems using focused-ion-beam milling as well as in situ electromechanical char...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microelectromechanical systems 2011-10, Vol.20 (5), p.1074-1080
Hauptverfasser: Homann, L. V., Booth, T., Lei, A., Petersen, D. H., Davis, Z. J., Boggild, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1080
container_issue 5
container_start_page 1074
container_title Journal of microelectromechanical systems
container_volume 20
creator Homann, L. V.
Booth, T.
Lei, A.
Petersen, D. H.
Davis, Z. J.
Boggild, P.
description Nanomechanical resonators have a huge potential for a variety of applications, including high-resolution mass sensing. In this paper, we demonstrate a novel rapid prototyping method for fabricating nanoelectromechanical systems using focused-ion-beam milling as well as in situ electromechanical characterization using a transmission electron microscope. Nanomechanical resonators were cut out of thin membrane chips, which have been prefabricated using standard cleanroom processing. We have demonstrated the fabrication of double-clamped beams with feature sizes down to 200 nm using a fabrication time of 30 min per device. Afterwards, the dynamic and structural properties of a double-clamped beam were measured after subsequent Joule heating events in order to ascertain the dependence of the internal structure on the Q-factor and resonant frequency of the device. It was observed that a change from amorphous to polycrystalline silicon structure significantly increased the resonant frequency as well as the Q-factor of the nanomechanical resonator. Aside from allowing detailed studies of the correlation between internal structure and nanomechanical behavior on an individual rather than a statistical basis, the combination of a short turnaround time and in situ nonlithographic tuning of the properties provide a flexible approach to the development and prototyping of nanomechanical devices.
doi_str_mv 10.1109/JMEMS.2011.2163300
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_6004800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6004800</ieee_id><sourcerecordid>2550359611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-a41cd8dee85bf2b846447bbb9b5b569bfba45f1496908876c245fc9f180fefe53</originalsourceid><addsrcrecordid>eNpdkEtrGzEURofQQtIkfyDdiELpahzd0WOkZZtH4-A0kAd0JyT5qp0wlpzRzKL_vnJsvMjq3ovO9yFOVZ0BnQFQfX57d3X3OGsowKwByRilB9URaA41BaE-lJ2Ktm5BtIfVp5xfKAXOlTyqfs8jeezGiTxNsYt_SArkOvkp47Kep1j_QLsilxi6iEvyy8a0Qv_Xxs7bnjxgTtGOacjkOW-yt2nqkdygHct1Un0Mts94upvH1fP11dPFTb24_zm_-L6oPRNyrC0Hv1RLRCVcaJzikvPWOaedcEJqF5zlIgDXUlOlWumbcnodQNGAAQU7rr5te9dDep0wj2bVZY99byOmKRvdSAaaCijkl3fkS5qGWD5nNDBgjCtWoGYL-SHlPGAw66Fb2eGfAWo2qs2barNRbXaqS-jrrtnmYiYMNvou75MNl1QKzgv3ect1iLh_lpRyVVr-A2nhhow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>913133483</pqid></control><display><type>article</type><title>In Situ Tuning of Focused-Ion-Beam Defined Nanomechanical Resonators Using Joule Heating</title><source>IEEE Electronic Library (IEL)</source><creator>Homann, L. V. ; Booth, T. ; Lei, A. ; Petersen, D. H. ; Davis, Z. J. ; Boggild, P.</creator><creatorcontrib>Homann, L. V. ; Booth, T. ; Lei, A. ; Petersen, D. H. ; Davis, Z. J. ; Boggild, P.</creatorcontrib><description>Nanomechanical resonators have a huge potential for a variety of applications, including high-resolution mass sensing. In this paper, we demonstrate a novel rapid prototyping method for fabricating nanoelectromechanical systems using focused-ion-beam milling as well as in situ electromechanical characterization using a transmission electron microscope. Nanomechanical resonators were cut out of thin membrane chips, which have been prefabricated using standard cleanroom processing. We have demonstrated the fabrication of double-clamped beams with feature sizes down to 200 nm using a fabrication time of 30 min per device. Afterwards, the dynamic and structural properties of a double-clamped beam were measured after subsequent Joule heating events in order to ascertain the dependence of the internal structure on the Q-factor and resonant frequency of the device. It was observed that a change from amorphous to polycrystalline silicon structure significantly increased the resonant frequency as well as the Q-factor of the nanomechanical resonator. Aside from allowing detailed studies of the correlation between internal structure and nanomechanical behavior on an individual rather than a statistical basis, the combination of a short turnaround time and in situ nonlithographic tuning of the properties provide a flexible approach to the development and prototyping of nanomechanical devices.</description><identifier>ISSN: 1057-7157</identifier><identifier>EISSN: 1941-0158</identifier><identifier>DOI: 10.1109/JMEMS.2011.2163300</identifier><identifier>CODEN: JMIYET</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Annealing ; Cross-disciplinary physics: materials science; rheology ; Devices ; Exact sciences and technology ; Focused ion beam ; Heating ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Materials science ; Mechanical instruments, equipment and techniques ; Methods of nanofabrication ; Micromechanical devices and systems ; Milling ; Nanocomposites ; nanoelectromechancial systems ; Nanoelectromechanical systems ; nanofabrication ; nanolithography ; Nanomaterials ; nanopatterning ; Nanostructure ; nanotechnology ; Physics ; Q factor ; Rapid prototyping ; Resistance ; Resonant frequencies ; Resonant frequency ; Resonators ; Silicon ; transmission electron microscopy ; Tuning</subject><ispartof>Journal of microelectromechanical systems, 2011-10, Vol.20 (5), p.1074-1080</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-a41cd8dee85bf2b846447bbb9b5b569bfba45f1496908876c245fc9f180fefe53</citedby><cites>FETCH-LOGICAL-c356t-a41cd8dee85bf2b846447bbb9b5b569bfba45f1496908876c245fc9f180fefe53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6004800$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6004800$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24606544$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Homann, L. V.</creatorcontrib><creatorcontrib>Booth, T.</creatorcontrib><creatorcontrib>Lei, A.</creatorcontrib><creatorcontrib>Petersen, D. H.</creatorcontrib><creatorcontrib>Davis, Z. J.</creatorcontrib><creatorcontrib>Boggild, P.</creatorcontrib><title>In Situ Tuning of Focused-Ion-Beam Defined Nanomechanical Resonators Using Joule Heating</title><title>Journal of microelectromechanical systems</title><addtitle>JMEMS</addtitle><description>Nanomechanical resonators have a huge potential for a variety of applications, including high-resolution mass sensing. In this paper, we demonstrate a novel rapid prototyping method for fabricating nanoelectromechanical systems using focused-ion-beam milling as well as in situ electromechanical characterization using a transmission electron microscope. Nanomechanical resonators were cut out of thin membrane chips, which have been prefabricated using standard cleanroom processing. We have demonstrated the fabrication of double-clamped beams with feature sizes down to 200 nm using a fabrication time of 30 min per device. Afterwards, the dynamic and structural properties of a double-clamped beam were measured after subsequent Joule heating events in order to ascertain the dependence of the internal structure on the Q-factor and resonant frequency of the device. It was observed that a change from amorphous to polycrystalline silicon structure significantly increased the resonant frequency as well as the Q-factor of the nanomechanical resonator. Aside from allowing detailed studies of the correlation between internal structure and nanomechanical behavior on an individual rather than a statistical basis, the combination of a short turnaround time and in situ nonlithographic tuning of the properties provide a flexible approach to the development and prototyping of nanomechanical devices.</description><subject>Annealing</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Devices</subject><subject>Exact sciences and technology</subject><subject>Focused ion beam</subject><subject>Heating</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Materials science</subject><subject>Mechanical instruments, equipment and techniques</subject><subject>Methods of nanofabrication</subject><subject>Micromechanical devices and systems</subject><subject>Milling</subject><subject>Nanocomposites</subject><subject>nanoelectromechancial systems</subject><subject>Nanoelectromechanical systems</subject><subject>nanofabrication</subject><subject>nanolithography</subject><subject>Nanomaterials</subject><subject>nanopatterning</subject><subject>Nanostructure</subject><subject>nanotechnology</subject><subject>Physics</subject><subject>Q factor</subject><subject>Rapid prototyping</subject><subject>Resistance</subject><subject>Resonant frequencies</subject><subject>Resonant frequency</subject><subject>Resonators</subject><subject>Silicon</subject><subject>transmission electron microscopy</subject><subject>Tuning</subject><issn>1057-7157</issn><issn>1941-0158</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtrGzEURofQQtIkfyDdiELpahzd0WOkZZtH4-A0kAd0JyT5qp0wlpzRzKL_vnJsvMjq3ovO9yFOVZ0BnQFQfX57d3X3OGsowKwByRilB9URaA41BaE-lJ2Ktm5BtIfVp5xfKAXOlTyqfs8jeezGiTxNsYt_SArkOvkp47Kep1j_QLsilxi6iEvyy8a0Qv_Xxs7bnjxgTtGOacjkOW-yt2nqkdygHct1Un0Mts94upvH1fP11dPFTb24_zm_-L6oPRNyrC0Hv1RLRCVcaJzikvPWOaedcEJqF5zlIgDXUlOlWumbcnodQNGAAQU7rr5te9dDep0wj2bVZY99byOmKRvdSAaaCijkl3fkS5qGWD5nNDBgjCtWoGYL-SHlPGAw66Fb2eGfAWo2qs2barNRbXaqS-jrrtnmYiYMNvou75MNl1QKzgv3ect1iLh_lpRyVVr-A2nhhow</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Homann, L. V.</creator><creator>Booth, T.</creator><creator>Lei, A.</creator><creator>Petersen, D. H.</creator><creator>Davis, Z. J.</creator><creator>Boggild, P.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20111001</creationdate><title>In Situ Tuning of Focused-Ion-Beam Defined Nanomechanical Resonators Using Joule Heating</title><author>Homann, L. V. ; Booth, T. ; Lei, A. ; Petersen, D. H. ; Davis, Z. J. ; Boggild, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-a41cd8dee85bf2b846447bbb9b5b569bfba45f1496908876c245fc9f180fefe53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Annealing</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Devices</topic><topic>Exact sciences and technology</topic><topic>Focused ion beam</topic><topic>Heating</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Materials science</topic><topic>Mechanical instruments, equipment and techniques</topic><topic>Methods of nanofabrication</topic><topic>Micromechanical devices and systems</topic><topic>Milling</topic><topic>Nanocomposites</topic><topic>nanoelectromechancial systems</topic><topic>Nanoelectromechanical systems</topic><topic>nanofabrication</topic><topic>nanolithography</topic><topic>Nanomaterials</topic><topic>nanopatterning</topic><topic>Nanostructure</topic><topic>nanotechnology</topic><topic>Physics</topic><topic>Q factor</topic><topic>Rapid prototyping</topic><topic>Resistance</topic><topic>Resonant frequencies</topic><topic>Resonant frequency</topic><topic>Resonators</topic><topic>Silicon</topic><topic>transmission electron microscopy</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Homann, L. V.</creatorcontrib><creatorcontrib>Booth, T.</creatorcontrib><creatorcontrib>Lei, A.</creatorcontrib><creatorcontrib>Petersen, D. H.</creatorcontrib><creatorcontrib>Davis, Z. J.</creatorcontrib><creatorcontrib>Boggild, P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>Journal of microelectromechanical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Homann, L. V.</au><au>Booth, T.</au><au>Lei, A.</au><au>Petersen, D. H.</au><au>Davis, Z. J.</au><au>Boggild, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Tuning of Focused-Ion-Beam Defined Nanomechanical Resonators Using Joule Heating</atitle><jtitle>Journal of microelectromechanical systems</jtitle><stitle>JMEMS</stitle><date>2011-10-01</date><risdate>2011</risdate><volume>20</volume><issue>5</issue><spage>1074</spage><epage>1080</epage><pages>1074-1080</pages><issn>1057-7157</issn><eissn>1941-0158</eissn><coden>JMIYET</coden><abstract>Nanomechanical resonators have a huge potential for a variety of applications, including high-resolution mass sensing. In this paper, we demonstrate a novel rapid prototyping method for fabricating nanoelectromechanical systems using focused-ion-beam milling as well as in situ electromechanical characterization using a transmission electron microscope. Nanomechanical resonators were cut out of thin membrane chips, which have been prefabricated using standard cleanroom processing. We have demonstrated the fabrication of double-clamped beams with feature sizes down to 200 nm using a fabrication time of 30 min per device. Afterwards, the dynamic and structural properties of a double-clamped beam were measured after subsequent Joule heating events in order to ascertain the dependence of the internal structure on the Q-factor and resonant frequency of the device. It was observed that a change from amorphous to polycrystalline silicon structure significantly increased the resonant frequency as well as the Q-factor of the nanomechanical resonator. Aside from allowing detailed studies of the correlation between internal structure and nanomechanical behavior on an individual rather than a statistical basis, the combination of a short turnaround time and in situ nonlithographic tuning of the properties provide a flexible approach to the development and prototyping of nanomechanical devices.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/JMEMS.2011.2163300</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7157
ispartof Journal of microelectromechanical systems, 2011-10, Vol.20 (5), p.1074-1080
issn 1057-7157
1941-0158
language eng
recordid cdi_ieee_primary_6004800
source IEEE Electronic Library (IEL)
subjects Annealing
Cross-disciplinary physics: materials science
rheology
Devices
Exact sciences and technology
Focused ion beam
Heating
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Materials science
Mechanical instruments, equipment and techniques
Methods of nanofabrication
Micromechanical devices and systems
Milling
Nanocomposites
nanoelectromechancial systems
Nanoelectromechanical systems
nanofabrication
nanolithography
Nanomaterials
nanopatterning
Nanostructure
nanotechnology
Physics
Q factor
Rapid prototyping
Resistance
Resonant frequencies
Resonant frequency
Resonators
Silicon
transmission electron microscopy
Tuning
title In Situ Tuning of Focused-Ion-Beam Defined Nanomechanical Resonators Using Joule Heating
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A01%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Tuning%20of%20Focused-Ion-Beam%20Defined%20Nanomechanical%20Resonators%20Using%20Joule%20Heating&rft.jtitle=Journal%20of%20microelectromechanical%20systems&rft.au=Homann,%20L.%20V.&rft.date=2011-10-01&rft.volume=20&rft.issue=5&rft.spage=1074&rft.epage=1080&rft.pages=1074-1080&rft.issn=1057-7157&rft.eissn=1941-0158&rft.coden=JMIYET&rft_id=info:doi/10.1109/JMEMS.2011.2163300&rft_dat=%3Cproquest_RIE%3E2550359611%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=913133483&rft_id=info:pmid/&rft_ieee_id=6004800&rfr_iscdi=true