A context-aware smart seat
This paper reports the characterization and test of an embedded implementation of the k-Nearest Neighbor (kNN) classifier in a resource constrained device applied to a seat to capture user postures and combine them with contextual information about the user. The embedded platform is a wearable multi...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 109 |
---|---|
container_issue | |
container_start_page | 104 |
container_title | |
container_volume | |
creator | Benocci, M. Farella, E. Benini, L. |
description | This paper reports the characterization and test of an embedded implementation of the k-Nearest Neighbor (kNN) classifier in a resource constrained device applied to a seat to capture user postures and combine them with contextual information about the user. The embedded platform is a wearable multi-sensor device based on the 32 bit ARM Cortex M3 architecture, capable of data processing (sampling, windowing, filtering, Fast Fourier Transform) from 9 different sensors. The system, applied to the seat, identifies 6 different user postures - adopted while she/he is working on the desk - and fuses the result with the information available from other sensors worn by the user, collecting information about her/his activities and physiological state. The kNN classifier is evaluated in terms of required computational power and latency. 7 users have been monitored along 3 days. The posture recognition accuracy reaches 93.7%, it requires 9KB of memory and introduces a latency of 950usec, satisfying strict real-time requirements. |
doi_str_mv | 10.1109/IWASI.2011.6004697 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6004697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6004697</ieee_id><sourcerecordid>6004697</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-7f1d563841d82bd2055c790bbefbd9935aebb8603e2915f44e7478e48020f1be3</originalsourceid><addsrcrecordid>eNpVj8tqwzAQRRVKoCXxD6Qb_4DdGb1GWprQhyGQRQJZBikegUvTFkvQ9u8baDa9m8vZXM4VYoXQIoJ_6A_drm8lILYWQFtPM1F5cqgNEVip4eYfK3Urqpxf4RIryYG6E6uuPn28F_4uTfgKE9f5HKZSZw5lKeYpvGWurr0Q-6fH_fql2Wyf-3W3aUYPpaGEg7HKaRycjIMEY07kIUZOcfBemcAxOguKpUeTtGbS5Fg7kJAwslqI-7_ZkZmPn9N4Efg5Xg-pXywyPHc</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A context-aware smart seat</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Benocci, M. ; Farella, E. ; Benini, L.</creator><creatorcontrib>Benocci, M. ; Farella, E. ; Benini, L.</creatorcontrib><description>This paper reports the characterization and test of an embedded implementation of the k-Nearest Neighbor (kNN) classifier in a resource constrained device applied to a seat to capture user postures and combine them with contextual information about the user. The embedded platform is a wearable multi-sensor device based on the 32 bit ARM Cortex M3 architecture, capable of data processing (sampling, windowing, filtering, Fast Fourier Transform) from 9 different sensors. The system, applied to the seat, identifies 6 different user postures - adopted while she/he is working on the desk - and fuses the result with the information available from other sensors worn by the user, collecting information about her/his activities and physiological state. The kNN classifier is evaluated in terms of required computational power and latency. 7 users have been monitored along 3 days. The posture recognition accuracy reaches 93.7%, it requires 9KB of memory and introduces a latency of 950usec, satisfying strict real-time requirements.</description><identifier>ISBN: 9781457706233</identifier><identifier>ISBN: 1457706237</identifier><identifier>EISBN: 9781457706240</identifier><identifier>EISBN: 9781457706226</identifier><identifier>EISBN: 1457706245</identifier><identifier>EISBN: 1457706229</identifier><identifier>DOI: 10.1109/IWASI.2011.6004697</identifier><language>eng</language><publisher>IEEE</publisher><subject>Electromyography ; Electrooculography ; Hidden Markov models ; Magnetic resonance imaging ; Magnetometers ; Microphones ; Ultrasonic imaging</subject><ispartof>2011 4th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI), 2011, p.104-109</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6004697$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6004697$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Benocci, M.</creatorcontrib><creatorcontrib>Farella, E.</creatorcontrib><creatorcontrib>Benini, L.</creatorcontrib><title>A context-aware smart seat</title><title>2011 4th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI)</title><addtitle>IWASI</addtitle><description>This paper reports the characterization and test of an embedded implementation of the k-Nearest Neighbor (kNN) classifier in a resource constrained device applied to a seat to capture user postures and combine them with contextual information about the user. The embedded platform is a wearable multi-sensor device based on the 32 bit ARM Cortex M3 architecture, capable of data processing (sampling, windowing, filtering, Fast Fourier Transform) from 9 different sensors. The system, applied to the seat, identifies 6 different user postures - adopted while she/he is working on the desk - and fuses the result with the information available from other sensors worn by the user, collecting information about her/his activities and physiological state. The kNN classifier is evaluated in terms of required computational power and latency. 7 users have been monitored along 3 days. The posture recognition accuracy reaches 93.7%, it requires 9KB of memory and introduces a latency of 950usec, satisfying strict real-time requirements.</description><subject>Electromyography</subject><subject>Electrooculography</subject><subject>Hidden Markov models</subject><subject>Magnetic resonance imaging</subject><subject>Magnetometers</subject><subject>Microphones</subject><subject>Ultrasonic imaging</subject><isbn>9781457706233</isbn><isbn>1457706237</isbn><isbn>9781457706240</isbn><isbn>9781457706226</isbn><isbn>1457706245</isbn><isbn>1457706229</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj8tqwzAQRRVKoCXxD6Qb_4DdGb1GWprQhyGQRQJZBikegUvTFkvQ9u8baDa9m8vZXM4VYoXQIoJ_6A_drm8lILYWQFtPM1F5cqgNEVip4eYfK3Urqpxf4RIryYG6E6uuPn28F_4uTfgKE9f5HKZSZw5lKeYpvGWurr0Q-6fH_fql2Wyf-3W3aUYPpaGEg7HKaRycjIMEY07kIUZOcfBemcAxOguKpUeTtGbS5Fg7kJAwslqI-7_ZkZmPn9N4Efg5Xg-pXywyPHc</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Benocci, M.</creator><creator>Farella, E.</creator><creator>Benini, L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201106</creationdate><title>A context-aware smart seat</title><author>Benocci, M. ; Farella, E. ; Benini, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-7f1d563841d82bd2055c790bbefbd9935aebb8603e2915f44e7478e48020f1be3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Electromyography</topic><topic>Electrooculography</topic><topic>Hidden Markov models</topic><topic>Magnetic resonance imaging</topic><topic>Magnetometers</topic><topic>Microphones</topic><topic>Ultrasonic imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Benocci, M.</creatorcontrib><creatorcontrib>Farella, E.</creatorcontrib><creatorcontrib>Benini, L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Benocci, M.</au><au>Farella, E.</au><au>Benini, L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A context-aware smart seat</atitle><btitle>2011 4th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI)</btitle><stitle>IWASI</stitle><date>2011-06</date><risdate>2011</risdate><spage>104</spage><epage>109</epage><pages>104-109</pages><isbn>9781457706233</isbn><isbn>1457706237</isbn><eisbn>9781457706240</eisbn><eisbn>9781457706226</eisbn><eisbn>1457706245</eisbn><eisbn>1457706229</eisbn><abstract>This paper reports the characterization and test of an embedded implementation of the k-Nearest Neighbor (kNN) classifier in a resource constrained device applied to a seat to capture user postures and combine them with contextual information about the user. The embedded platform is a wearable multi-sensor device based on the 32 bit ARM Cortex M3 architecture, capable of data processing (sampling, windowing, filtering, Fast Fourier Transform) from 9 different sensors. The system, applied to the seat, identifies 6 different user postures - adopted while she/he is working on the desk - and fuses the result with the information available from other sensors worn by the user, collecting information about her/his activities and physiological state. The kNN classifier is evaluated in terms of required computational power and latency. 7 users have been monitored along 3 days. The posture recognition accuracy reaches 93.7%, it requires 9KB of memory and introduces a latency of 950usec, satisfying strict real-time requirements.</abstract><pub>IEEE</pub><doi>10.1109/IWASI.2011.6004697</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781457706233 |
ispartof | 2011 4th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI), 2011, p.104-109 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6004697 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Electromyography Electrooculography Hidden Markov models Magnetic resonance imaging Magnetometers Microphones Ultrasonic imaging |
title | A context-aware smart seat |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A40%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20context-aware%20smart%20seat&rft.btitle=2011%204th%20IEEE%20International%20Workshop%20on%20Advances%20in%20Sensors%20and%20Interfaces%20(IWASI)&rft.au=Benocci,%20M.&rft.date=2011-06&rft.spage=104&rft.epage=109&rft.pages=104-109&rft.isbn=9781457706233&rft.isbn_list=1457706237&rft_id=info:doi/10.1109/IWASI.2011.6004697&rft_dat=%3Cieee_6IE%3E6004697%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457706240&rft.eisbn_list=9781457706226&rft.eisbn_list=1457706245&rft.eisbn_list=1457706229&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6004697&rfr_iscdi=true |