Using Visual Analysis to Weight Multiple Signatures to Discriminate Complex Data
Complex data is usually represented through signatures, which are sets of features describing the data content. Several kinds of complex data allow extracting different signatures from an object, representing complementary data characteristics. However, there is no ground truth of how balancing thes...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 287 |
---|---|
container_issue | |
container_start_page | 282 |
container_title | |
container_volume | |
creator | Bueno, R. Kaster, D. S. Razente, H. L. Barioni, M. C. N. Traina, A. J. M. Traina, Caetano |
description | Complex data is usually represented through signatures, which are sets of features describing the data content. Several kinds of complex data allow extracting different signatures from an object, representing complementary data characteristics. However, there is no ground truth of how balancing these signatures to reach an ideal similarity distribution. It depends on the analyst intent, that is, according to the job he/she is performing, a few signatures should have more impact in the data distribution than others. This work presents a new technique, called Visual Signature Weighting (ViSW), which allows interactively analyzing the impact of each signature in the similarity of complex data represented through multiple signatures. Our method provides means to explore the tradeoff of prioritizing signatures over the others, by dynamically changing their weight relation. We also present case studies showing that the technique is useful for global dataset analysis as well as for inspecting subspaces of interest. |
doi_str_mv | 10.1109/IV.2011.59 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6004014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6004014</ieee_id><sourcerecordid>6004014</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1de155bfec48bcd95c1249aea1f63f11f001982653e2003c30b0f79d9c8df3b93</originalsourceid><addsrcrecordid>eNotj11LwzAYhYMfYJ278dab_IHW922aJrkcndPBREE3L0eaJjXSdWNJwf17i3p14JzD4TmE3CJkiKDul5ssB8SMqzOS5EzwFJDJczJVQmLBhQBZSnlBEuQc0hKYuCLXIXwBFJwLnpDXdfB9Szc-DLqjs153p-ADjXv6YX37Genz0EV_6Cx9822v43C0v-ncB3P0Oz9allb73dj4pnMd9Q25dLoLdvqvE7JePLxXT-nq5XFZzVapR8Fjio0dkWpnTSFr0yhuMC-UthpdyRyiA0Al85IzmwMww6AGJ1SjjGwcqxWbkLu_XW-t3R5GFn08bcvxGGDBfgDje0-2</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Using Visual Analysis to Weight Multiple Signatures to Discriminate Complex Data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bueno, R. ; Kaster, D. S. ; Razente, H. L. ; Barioni, M. C. N. ; Traina, A. J. M. ; Traina, Caetano</creator><creatorcontrib>Bueno, R. ; Kaster, D. S. ; Razente, H. L. ; Barioni, M. C. N. ; Traina, A. J. M. ; Traina, Caetano</creatorcontrib><description>Complex data is usually represented through signatures, which are sets of features describing the data content. Several kinds of complex data allow extracting different signatures from an object, representing complementary data characteristics. However, there is no ground truth of how balancing these signatures to reach an ideal similarity distribution. It depends on the analyst intent, that is, according to the job he/she is performing, a few signatures should have more impact in the data distribution than others. This work presents a new technique, called Visual Signature Weighting (ViSW), which allows interactively analyzing the impact of each signature in the similarity of complex data represented through multiple signatures. Our method provides means to explore the tradeoff of prioritizing signatures over the others, by dynamically changing their weight relation. We also present case studies showing that the technique is useful for global dataset analysis as well as for inspecting subspaces of interest.</description><identifier>ISSN: 1550-6037</identifier><identifier>ISBN: 9781457708688</identifier><identifier>ISBN: 145770868X</identifier><identifier>EISSN: 2375-0138</identifier><identifier>DOI: 10.1109/IV.2011.59</identifier><language>eng</language><publisher>IEEE</publisher><subject>complex data similarity ; Data mining ; Data visualization ; Feature extraction ; Histograms ; Image color analysis ; Measurement ; multiple signature weighting ; visual data analysis ; Visualization</subject><ispartof>2011 15th International Conference on Information Visualisation, 2011, p.282-287</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6004014$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6004014$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bueno, R.</creatorcontrib><creatorcontrib>Kaster, D. S.</creatorcontrib><creatorcontrib>Razente, H. L.</creatorcontrib><creatorcontrib>Barioni, M. C. N.</creatorcontrib><creatorcontrib>Traina, A. J. M.</creatorcontrib><creatorcontrib>Traina, Caetano</creatorcontrib><title>Using Visual Analysis to Weight Multiple Signatures to Discriminate Complex Data</title><title>2011 15th International Conference on Information Visualisation</title><addtitle>iv</addtitle><description>Complex data is usually represented through signatures, which are sets of features describing the data content. Several kinds of complex data allow extracting different signatures from an object, representing complementary data characteristics. However, there is no ground truth of how balancing these signatures to reach an ideal similarity distribution. It depends on the analyst intent, that is, according to the job he/she is performing, a few signatures should have more impact in the data distribution than others. This work presents a new technique, called Visual Signature Weighting (ViSW), which allows interactively analyzing the impact of each signature in the similarity of complex data represented through multiple signatures. Our method provides means to explore the tradeoff of prioritizing signatures over the others, by dynamically changing their weight relation. We also present case studies showing that the technique is useful for global dataset analysis as well as for inspecting subspaces of interest.</description><subject>complex data similarity</subject><subject>Data mining</subject><subject>Data visualization</subject><subject>Feature extraction</subject><subject>Histograms</subject><subject>Image color analysis</subject><subject>Measurement</subject><subject>multiple signature weighting</subject><subject>visual data analysis</subject><subject>Visualization</subject><issn>1550-6037</issn><issn>2375-0138</issn><isbn>9781457708688</isbn><isbn>145770868X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj11LwzAYhYMfYJ278dab_IHW922aJrkcndPBREE3L0eaJjXSdWNJwf17i3p14JzD4TmE3CJkiKDul5ssB8SMqzOS5EzwFJDJczJVQmLBhQBZSnlBEuQc0hKYuCLXIXwBFJwLnpDXdfB9Szc-DLqjs153p-ADjXv6YX37Genz0EV_6Cx9822v43C0v-ncB3P0Oz9allb73dj4pnMd9Q25dLoLdvqvE7JePLxXT-nq5XFZzVapR8Fjio0dkWpnTSFr0yhuMC-UthpdyRyiA0Al85IzmwMww6AGJ1SjjGwcqxWbkLu_XW-t3R5GFn08bcvxGGDBfgDje0-2</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Bueno, R.</creator><creator>Kaster, D. S.</creator><creator>Razente, H. L.</creator><creator>Barioni, M. C. N.</creator><creator>Traina, A. J. M.</creator><creator>Traina, Caetano</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201107</creationdate><title>Using Visual Analysis to Weight Multiple Signatures to Discriminate Complex Data</title><author>Bueno, R. ; Kaster, D. S. ; Razente, H. L. ; Barioni, M. C. N. ; Traina, A. J. M. ; Traina, Caetano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1de155bfec48bcd95c1249aea1f63f11f001982653e2003c30b0f79d9c8df3b93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>complex data similarity</topic><topic>Data mining</topic><topic>Data visualization</topic><topic>Feature extraction</topic><topic>Histograms</topic><topic>Image color analysis</topic><topic>Measurement</topic><topic>multiple signature weighting</topic><topic>visual data analysis</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Bueno, R.</creatorcontrib><creatorcontrib>Kaster, D. S.</creatorcontrib><creatorcontrib>Razente, H. L.</creatorcontrib><creatorcontrib>Barioni, M. C. N.</creatorcontrib><creatorcontrib>Traina, A. J. M.</creatorcontrib><creatorcontrib>Traina, Caetano</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bueno, R.</au><au>Kaster, D. S.</au><au>Razente, H. L.</au><au>Barioni, M. C. N.</au><au>Traina, A. J. M.</au><au>Traina, Caetano</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Using Visual Analysis to Weight Multiple Signatures to Discriminate Complex Data</atitle><btitle>2011 15th International Conference on Information Visualisation</btitle><stitle>iv</stitle><date>2011-07</date><risdate>2011</risdate><spage>282</spage><epage>287</epage><pages>282-287</pages><issn>1550-6037</issn><eissn>2375-0138</eissn><isbn>9781457708688</isbn><isbn>145770868X</isbn><abstract>Complex data is usually represented through signatures, which are sets of features describing the data content. Several kinds of complex data allow extracting different signatures from an object, representing complementary data characteristics. However, there is no ground truth of how balancing these signatures to reach an ideal similarity distribution. It depends on the analyst intent, that is, according to the job he/she is performing, a few signatures should have more impact in the data distribution than others. This work presents a new technique, called Visual Signature Weighting (ViSW), which allows interactively analyzing the impact of each signature in the similarity of complex data represented through multiple signatures. Our method provides means to explore the tradeoff of prioritizing signatures over the others, by dynamically changing their weight relation. We also present case studies showing that the technique is useful for global dataset analysis as well as for inspecting subspaces of interest.</abstract><pub>IEEE</pub><doi>10.1109/IV.2011.59</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1550-6037 |
ispartof | 2011 15th International Conference on Information Visualisation, 2011, p.282-287 |
issn | 1550-6037 2375-0138 |
language | eng |
recordid | cdi_ieee_primary_6004014 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | complex data similarity Data mining Data visualization Feature extraction Histograms Image color analysis Measurement multiple signature weighting visual data analysis Visualization |
title | Using Visual Analysis to Weight Multiple Signatures to Discriminate Complex Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A09%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Using%20Visual%20Analysis%20to%20Weight%20Multiple%20Signatures%20to%20Discriminate%20Complex%20Data&rft.btitle=2011%2015th%20International%20Conference%20on%20Information%20Visualisation&rft.au=Bueno,%20R.&rft.date=2011-07&rft.spage=282&rft.epage=287&rft.pages=282-287&rft.issn=1550-6037&rft.eissn=2375-0138&rft.isbn=9781457708688&rft.isbn_list=145770868X&rft_id=info:doi/10.1109/IV.2011.59&rft_dat=%3Cieee_6IE%3E6004014%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6004014&rfr_iscdi=true |