Using Visual Analysis to Weight Multiple Signatures to Discriminate Complex Data

Complex data is usually represented through signatures, which are sets of features describing the data content. Several kinds of complex data allow extracting different signatures from an object, representing complementary data characteristics. However, there is no ground truth of how balancing thes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bueno, R., Kaster, D. S., Razente, H. L., Barioni, M. C. N., Traina, A. J. M., Traina, Caetano
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 287
container_issue
container_start_page 282
container_title
container_volume
creator Bueno, R.
Kaster, D. S.
Razente, H. L.
Barioni, M. C. N.
Traina, A. J. M.
Traina, Caetano
description Complex data is usually represented through signatures, which are sets of features describing the data content. Several kinds of complex data allow extracting different signatures from an object, representing complementary data characteristics. However, there is no ground truth of how balancing these signatures to reach an ideal similarity distribution. It depends on the analyst intent, that is, according to the job he/she is performing, a few signatures should have more impact in the data distribution than others. This work presents a new technique, called Visual Signature Weighting (ViSW), which allows interactively analyzing the impact of each signature in the similarity of complex data represented through multiple signatures. Our method provides means to explore the tradeoff of prioritizing signatures over the others, by dynamically changing their weight relation. We also present case studies showing that the technique is useful for global dataset analysis as well as for inspecting subspaces of interest.
doi_str_mv 10.1109/IV.2011.59
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6004014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6004014</ieee_id><sourcerecordid>6004014</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-1de155bfec48bcd95c1249aea1f63f11f001982653e2003c30b0f79d9c8df3b93</originalsourceid><addsrcrecordid>eNotj11LwzAYhYMfYJ278dab_IHW922aJrkcndPBREE3L0eaJjXSdWNJwf17i3p14JzD4TmE3CJkiKDul5ssB8SMqzOS5EzwFJDJczJVQmLBhQBZSnlBEuQc0hKYuCLXIXwBFJwLnpDXdfB9Szc-DLqjs153p-ADjXv6YX37Genz0EV_6Cx9822v43C0v-ncB3P0Oz9allb73dj4pnMd9Q25dLoLdvqvE7JePLxXT-nq5XFZzVapR8Fjio0dkWpnTSFr0yhuMC-UthpdyRyiA0Al85IzmwMww6AGJ1SjjGwcqxWbkLu_XW-t3R5GFn08bcvxGGDBfgDje0-2</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Using Visual Analysis to Weight Multiple Signatures to Discriminate Complex Data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bueno, R. ; Kaster, D. S. ; Razente, H. L. ; Barioni, M. C. N. ; Traina, A. J. M. ; Traina, Caetano</creator><creatorcontrib>Bueno, R. ; Kaster, D. S. ; Razente, H. L. ; Barioni, M. C. N. ; Traina, A. J. M. ; Traina, Caetano</creatorcontrib><description>Complex data is usually represented through signatures, which are sets of features describing the data content. Several kinds of complex data allow extracting different signatures from an object, representing complementary data characteristics. However, there is no ground truth of how balancing these signatures to reach an ideal similarity distribution. It depends on the analyst intent, that is, according to the job he/she is performing, a few signatures should have more impact in the data distribution than others. This work presents a new technique, called Visual Signature Weighting (ViSW), which allows interactively analyzing the impact of each signature in the similarity of complex data represented through multiple signatures. Our method provides means to explore the tradeoff of prioritizing signatures over the others, by dynamically changing their weight relation. We also present case studies showing that the technique is useful for global dataset analysis as well as for inspecting subspaces of interest.</description><identifier>ISSN: 1550-6037</identifier><identifier>ISBN: 9781457708688</identifier><identifier>ISBN: 145770868X</identifier><identifier>EISSN: 2375-0138</identifier><identifier>DOI: 10.1109/IV.2011.59</identifier><language>eng</language><publisher>IEEE</publisher><subject>complex data similarity ; Data mining ; Data visualization ; Feature extraction ; Histograms ; Image color analysis ; Measurement ; multiple signature weighting ; visual data analysis ; Visualization</subject><ispartof>2011 15th International Conference on Information Visualisation, 2011, p.282-287</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6004014$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6004014$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bueno, R.</creatorcontrib><creatorcontrib>Kaster, D. S.</creatorcontrib><creatorcontrib>Razente, H. L.</creatorcontrib><creatorcontrib>Barioni, M. C. N.</creatorcontrib><creatorcontrib>Traina, A. J. M.</creatorcontrib><creatorcontrib>Traina, Caetano</creatorcontrib><title>Using Visual Analysis to Weight Multiple Signatures to Discriminate Complex Data</title><title>2011 15th International Conference on Information Visualisation</title><addtitle>iv</addtitle><description>Complex data is usually represented through signatures, which are sets of features describing the data content. Several kinds of complex data allow extracting different signatures from an object, representing complementary data characteristics. However, there is no ground truth of how balancing these signatures to reach an ideal similarity distribution. It depends on the analyst intent, that is, according to the job he/she is performing, a few signatures should have more impact in the data distribution than others. This work presents a new technique, called Visual Signature Weighting (ViSW), which allows interactively analyzing the impact of each signature in the similarity of complex data represented through multiple signatures. Our method provides means to explore the tradeoff of prioritizing signatures over the others, by dynamically changing their weight relation. We also present case studies showing that the technique is useful for global dataset analysis as well as for inspecting subspaces of interest.</description><subject>complex data similarity</subject><subject>Data mining</subject><subject>Data visualization</subject><subject>Feature extraction</subject><subject>Histograms</subject><subject>Image color analysis</subject><subject>Measurement</subject><subject>multiple signature weighting</subject><subject>visual data analysis</subject><subject>Visualization</subject><issn>1550-6037</issn><issn>2375-0138</issn><isbn>9781457708688</isbn><isbn>145770868X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj11LwzAYhYMfYJ278dab_IHW922aJrkcndPBREE3L0eaJjXSdWNJwf17i3p14JzD4TmE3CJkiKDul5ssB8SMqzOS5EzwFJDJczJVQmLBhQBZSnlBEuQc0hKYuCLXIXwBFJwLnpDXdfB9Szc-DLqjs153p-ADjXv6YX37Genz0EV_6Cx9822v43C0v-ncB3P0Oz9allb73dj4pnMd9Q25dLoLdvqvE7JePLxXT-nq5XFZzVapR8Fjio0dkWpnTSFr0yhuMC-UthpdyRyiA0Al85IzmwMww6AGJ1SjjGwcqxWbkLu_XW-t3R5GFn08bcvxGGDBfgDje0-2</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Bueno, R.</creator><creator>Kaster, D. S.</creator><creator>Razente, H. L.</creator><creator>Barioni, M. C. N.</creator><creator>Traina, A. J. M.</creator><creator>Traina, Caetano</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201107</creationdate><title>Using Visual Analysis to Weight Multiple Signatures to Discriminate Complex Data</title><author>Bueno, R. ; Kaster, D. S. ; Razente, H. L. ; Barioni, M. C. N. ; Traina, A. J. M. ; Traina, Caetano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-1de155bfec48bcd95c1249aea1f63f11f001982653e2003c30b0f79d9c8df3b93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>complex data similarity</topic><topic>Data mining</topic><topic>Data visualization</topic><topic>Feature extraction</topic><topic>Histograms</topic><topic>Image color analysis</topic><topic>Measurement</topic><topic>multiple signature weighting</topic><topic>visual data analysis</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Bueno, R.</creatorcontrib><creatorcontrib>Kaster, D. S.</creatorcontrib><creatorcontrib>Razente, H. L.</creatorcontrib><creatorcontrib>Barioni, M. C. N.</creatorcontrib><creatorcontrib>Traina, A. J. M.</creatorcontrib><creatorcontrib>Traina, Caetano</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bueno, R.</au><au>Kaster, D. S.</au><au>Razente, H. L.</au><au>Barioni, M. C. N.</au><au>Traina, A. J. M.</au><au>Traina, Caetano</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Using Visual Analysis to Weight Multiple Signatures to Discriminate Complex Data</atitle><btitle>2011 15th International Conference on Information Visualisation</btitle><stitle>iv</stitle><date>2011-07</date><risdate>2011</risdate><spage>282</spage><epage>287</epage><pages>282-287</pages><issn>1550-6037</issn><eissn>2375-0138</eissn><isbn>9781457708688</isbn><isbn>145770868X</isbn><abstract>Complex data is usually represented through signatures, which are sets of features describing the data content. Several kinds of complex data allow extracting different signatures from an object, representing complementary data characteristics. However, there is no ground truth of how balancing these signatures to reach an ideal similarity distribution. It depends on the analyst intent, that is, according to the job he/she is performing, a few signatures should have more impact in the data distribution than others. This work presents a new technique, called Visual Signature Weighting (ViSW), which allows interactively analyzing the impact of each signature in the similarity of complex data represented through multiple signatures. Our method provides means to explore the tradeoff of prioritizing signatures over the others, by dynamically changing their weight relation. We also present case studies showing that the technique is useful for global dataset analysis as well as for inspecting subspaces of interest.</abstract><pub>IEEE</pub><doi>10.1109/IV.2011.59</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1550-6037
ispartof 2011 15th International Conference on Information Visualisation, 2011, p.282-287
issn 1550-6037
2375-0138
language eng
recordid cdi_ieee_primary_6004014
source IEEE Electronic Library (IEL) Conference Proceedings
subjects complex data similarity
Data mining
Data visualization
Feature extraction
Histograms
Image color analysis
Measurement
multiple signature weighting
visual data analysis
Visualization
title Using Visual Analysis to Weight Multiple Signatures to Discriminate Complex Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T19%3A09%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Using%20Visual%20Analysis%20to%20Weight%20Multiple%20Signatures%20to%20Discriminate%20Complex%20Data&rft.btitle=2011%2015th%20International%20Conference%20on%20Information%20Visualisation&rft.au=Bueno,%20R.&rft.date=2011-07&rft.spage=282&rft.epage=287&rft.pages=282-287&rft.issn=1550-6037&rft.eissn=2375-0138&rft.isbn=9781457708688&rft.isbn_list=145770868X&rft_id=info:doi/10.1109/IV.2011.59&rft_dat=%3Cieee_6IE%3E6004014%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6004014&rfr_iscdi=true