DFT algorithm of the trispectrum reconstruction
As the bispectrum of the symmetric distribution random signals is equal to zero, whereas its trispectrum is not equal to zero, signal or system needs reconstructing from samples of the trispectrum of observation data. DFT algorithm for amplitude and phase reconstruction from trispectrum is proposed...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4919 |
---|---|
container_issue | |
container_start_page | 4917 |
container_title | |
container_volume | |
creator | Yajun Li Xinzhong Yan Baokun Yu |
description | As the bispectrum of the symmetric distribution random signals is equal to zero, whereas its trispectrum is not equal to zero, signal or system needs reconstructing from samples of the trispectrum of observation data. DFT algorithm for amplitude and phase reconstruction from trispectrum is proposed based on the bispectrum DFT algorithm. The magnitude and phase of the Fourier transform of a signal as well as those of the trispectrum are expanded into a series using a set of appropriate basis functions. Reconstruction is achieved by equating coefficients of like terms of these two expansions. Its advantage is that it only use the diagonal elements of amplitude and phase of the trispectrum, thus the computation is significantly reduced. |
doi_str_mv | 10.1109/ICMT.2011.6003098 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6003098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6003098</ieee_id><sourcerecordid>6003098</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-943fba4a9ec8fd0bda3c821b703777762e203f06e654bfa56ff9e7380b2e79393</originalsourceid><addsrcrecordid>eNpFj81KAzEUhSMiqLUPIG7mBWZ689Mkdymj1ULFzexLkt7YSKdTMnHh2ztgod_mnG9z4DD2yKHhHHCxbj-6RgDnjQaQgPaK3XPNhVXGKLy-CFe3bD6O3zChNUqLd2zxsuoqd_gacir7vhpiVfZUlZzGE4WSf_oqUxiO41RDScPxgd1Edxhpfs4Z61avXftebz7f1u3zpk4IpUYlo3fKIQUbd-B3TgYruDcgzYQWJEBG0KSXyke31DEiGWnBCzIoUc7Y0_9sIqLtKafe5d_t-Z_8A3-HQ5o</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>DFT algorithm of the trispectrum reconstruction</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yajun Li ; Xinzhong Yan ; Baokun Yu</creator><creatorcontrib>Yajun Li ; Xinzhong Yan ; Baokun Yu</creatorcontrib><description>As the bispectrum of the symmetric distribution random signals is equal to zero, whereas its trispectrum is not equal to zero, signal or system needs reconstructing from samples of the trispectrum of observation data. DFT algorithm for amplitude and phase reconstruction from trispectrum is proposed based on the bispectrum DFT algorithm. The magnitude and phase of the Fourier transform of a signal as well as those of the trispectrum are expanded into a series using a set of appropriate basis functions. Reconstruction is achieved by equating coefficients of like terms of these two expansions. Its advantage is that it only use the diagonal elements of amplitude and phase of the trispectrum, thus the computation is significantly reduced.</description><identifier>ISBN: 1612847714</identifier><identifier>ISBN: 9781612847719</identifier><identifier>EISBN: 1612847749</identifier><identifier>EISBN: 1612847730</identifier><identifier>EISBN: 9781612847740</identifier><identifier>EISBN: 9781612847733</identifier><identifier>DOI: 10.1109/ICMT.2011.6003098</identifier><language>eng</language><publisher>IEEE</publisher><subject>amplitude reconstruction ; discrete Fourier transform (DFT) ; Discrete Fourier transforms ; Image reconstruction ; phase reconstruction ; Reconstruction algorithms ; Signal processing ; Signal processing algorithms ; Stochastic processes ; trispectrum</subject><ispartof>2011 International Conference on Multimedia Technology, 2011, p.4917-4919</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6003098$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6003098$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yajun Li</creatorcontrib><creatorcontrib>Xinzhong Yan</creatorcontrib><creatorcontrib>Baokun Yu</creatorcontrib><title>DFT algorithm of the trispectrum reconstruction</title><title>2011 International Conference on Multimedia Technology</title><addtitle>ICMT</addtitle><description>As the bispectrum of the symmetric distribution random signals is equal to zero, whereas its trispectrum is not equal to zero, signal or system needs reconstructing from samples of the trispectrum of observation data. DFT algorithm for amplitude and phase reconstruction from trispectrum is proposed based on the bispectrum DFT algorithm. The magnitude and phase of the Fourier transform of a signal as well as those of the trispectrum are expanded into a series using a set of appropriate basis functions. Reconstruction is achieved by equating coefficients of like terms of these two expansions. Its advantage is that it only use the diagonal elements of amplitude and phase of the trispectrum, thus the computation is significantly reduced.</description><subject>amplitude reconstruction</subject><subject>discrete Fourier transform (DFT)</subject><subject>Discrete Fourier transforms</subject><subject>Image reconstruction</subject><subject>phase reconstruction</subject><subject>Reconstruction algorithms</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Stochastic processes</subject><subject>trispectrum</subject><isbn>1612847714</isbn><isbn>9781612847719</isbn><isbn>1612847749</isbn><isbn>1612847730</isbn><isbn>9781612847740</isbn><isbn>9781612847733</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj81KAzEUhSMiqLUPIG7mBWZ689Mkdymj1ULFzexLkt7YSKdTMnHh2ztgod_mnG9z4DD2yKHhHHCxbj-6RgDnjQaQgPaK3XPNhVXGKLy-CFe3bD6O3zChNUqLd2zxsuoqd_gacir7vhpiVfZUlZzGE4WSf_oqUxiO41RDScPxgd1Edxhpfs4Z61avXftebz7f1u3zpk4IpUYlo3fKIQUbd-B3TgYruDcgzYQWJEBG0KSXyke31DEiGWnBCzIoUc7Y0_9sIqLtKafe5d_t-Z_8A3-HQ5o</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Yajun Li</creator><creator>Xinzhong Yan</creator><creator>Baokun Yu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201107</creationdate><title>DFT algorithm of the trispectrum reconstruction</title><author>Yajun Li ; Xinzhong Yan ; Baokun Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-943fba4a9ec8fd0bda3c821b703777762e203f06e654bfa56ff9e7380b2e79393</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>amplitude reconstruction</topic><topic>discrete Fourier transform (DFT)</topic><topic>Discrete Fourier transforms</topic><topic>Image reconstruction</topic><topic>phase reconstruction</topic><topic>Reconstruction algorithms</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Stochastic processes</topic><topic>trispectrum</topic><toplevel>online_resources</toplevel><creatorcontrib>Yajun Li</creatorcontrib><creatorcontrib>Xinzhong Yan</creatorcontrib><creatorcontrib>Baokun Yu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yajun Li</au><au>Xinzhong Yan</au><au>Baokun Yu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>DFT algorithm of the trispectrum reconstruction</atitle><btitle>2011 International Conference on Multimedia Technology</btitle><stitle>ICMT</stitle><date>2011-07</date><risdate>2011</risdate><spage>4917</spage><epage>4919</epage><pages>4917-4919</pages><isbn>1612847714</isbn><isbn>9781612847719</isbn><eisbn>1612847749</eisbn><eisbn>1612847730</eisbn><eisbn>9781612847740</eisbn><eisbn>9781612847733</eisbn><abstract>As the bispectrum of the symmetric distribution random signals is equal to zero, whereas its trispectrum is not equal to zero, signal or system needs reconstructing from samples of the trispectrum of observation data. DFT algorithm for amplitude and phase reconstruction from trispectrum is proposed based on the bispectrum DFT algorithm. The magnitude and phase of the Fourier transform of a signal as well as those of the trispectrum are expanded into a series using a set of appropriate basis functions. Reconstruction is achieved by equating coefficients of like terms of these two expansions. Its advantage is that it only use the diagonal elements of amplitude and phase of the trispectrum, thus the computation is significantly reduced.</abstract><pub>IEEE</pub><doi>10.1109/ICMT.2011.6003098</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1612847714 |
ispartof | 2011 International Conference on Multimedia Technology, 2011, p.4917-4919 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6003098 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | amplitude reconstruction discrete Fourier transform (DFT) Discrete Fourier transforms Image reconstruction phase reconstruction Reconstruction algorithms Signal processing Signal processing algorithms Stochastic processes trispectrum |
title | DFT algorithm of the trispectrum reconstruction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T00%3A58%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=DFT%20algorithm%20of%20the%20trispectrum%20reconstruction&rft.btitle=2011%20International%20Conference%20on%20Multimedia%20Technology&rft.au=Yajun%20Li&rft.date=2011-07&rft.spage=4917&rft.epage=4919&rft.pages=4917-4919&rft.isbn=1612847714&rft.isbn_list=9781612847719&rft_id=info:doi/10.1109/ICMT.2011.6003098&rft_dat=%3Cieee_6IE%3E6003098%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1612847749&rft.eisbn_list=1612847730&rft.eisbn_list=9781612847740&rft.eisbn_list=9781612847733&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6003098&rfr_iscdi=true |