DFT algorithm of the trispectrum reconstruction

As the bispectrum of the symmetric distribution random signals is equal to zero, whereas its trispectrum is not equal to zero, signal or system needs reconstructing from samples of the trispectrum of observation data. DFT algorithm for amplitude and phase reconstruction from trispectrum is proposed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yajun Li, Xinzhong Yan, Baokun Yu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4919
container_issue
container_start_page 4917
container_title
container_volume
creator Yajun Li
Xinzhong Yan
Baokun Yu
description As the bispectrum of the symmetric distribution random signals is equal to zero, whereas its trispectrum is not equal to zero, signal or system needs reconstructing from samples of the trispectrum of observation data. DFT algorithm for amplitude and phase reconstruction from trispectrum is proposed based on the bispectrum DFT algorithm. The magnitude and phase of the Fourier transform of a signal as well as those of the trispectrum are expanded into a series using a set of appropriate basis functions. Reconstruction is achieved by equating coefficients of like terms of these two expansions. Its advantage is that it only use the diagonal elements of amplitude and phase of the trispectrum, thus the computation is significantly reduced.
doi_str_mv 10.1109/ICMT.2011.6003098
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6003098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6003098</ieee_id><sourcerecordid>6003098</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-943fba4a9ec8fd0bda3c821b703777762e203f06e654bfa56ff9e7380b2e79393</originalsourceid><addsrcrecordid>eNpFj81KAzEUhSMiqLUPIG7mBWZ689Mkdymj1ULFzexLkt7YSKdTMnHh2ztgod_mnG9z4DD2yKHhHHCxbj-6RgDnjQaQgPaK3XPNhVXGKLy-CFe3bD6O3zChNUqLd2zxsuoqd_gacir7vhpiVfZUlZzGE4WSf_oqUxiO41RDScPxgd1Edxhpfs4Z61avXftebz7f1u3zpk4IpUYlo3fKIQUbd-B3TgYruDcgzYQWJEBG0KSXyke31DEiGWnBCzIoUc7Y0_9sIqLtKafe5d_t-Z_8A3-HQ5o</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>DFT algorithm of the trispectrum reconstruction</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yajun Li ; Xinzhong Yan ; Baokun Yu</creator><creatorcontrib>Yajun Li ; Xinzhong Yan ; Baokun Yu</creatorcontrib><description>As the bispectrum of the symmetric distribution random signals is equal to zero, whereas its trispectrum is not equal to zero, signal or system needs reconstructing from samples of the trispectrum of observation data. DFT algorithm for amplitude and phase reconstruction from trispectrum is proposed based on the bispectrum DFT algorithm. The magnitude and phase of the Fourier transform of a signal as well as those of the trispectrum are expanded into a series using a set of appropriate basis functions. Reconstruction is achieved by equating coefficients of like terms of these two expansions. Its advantage is that it only use the diagonal elements of amplitude and phase of the trispectrum, thus the computation is significantly reduced.</description><identifier>ISBN: 1612847714</identifier><identifier>ISBN: 9781612847719</identifier><identifier>EISBN: 1612847749</identifier><identifier>EISBN: 1612847730</identifier><identifier>EISBN: 9781612847740</identifier><identifier>EISBN: 9781612847733</identifier><identifier>DOI: 10.1109/ICMT.2011.6003098</identifier><language>eng</language><publisher>IEEE</publisher><subject>amplitude reconstruction ; discrete Fourier transform (DFT) ; Discrete Fourier transforms ; Image reconstruction ; phase reconstruction ; Reconstruction algorithms ; Signal processing ; Signal processing algorithms ; Stochastic processes ; trispectrum</subject><ispartof>2011 International Conference on Multimedia Technology, 2011, p.4917-4919</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6003098$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6003098$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yajun Li</creatorcontrib><creatorcontrib>Xinzhong Yan</creatorcontrib><creatorcontrib>Baokun Yu</creatorcontrib><title>DFT algorithm of the trispectrum reconstruction</title><title>2011 International Conference on Multimedia Technology</title><addtitle>ICMT</addtitle><description>As the bispectrum of the symmetric distribution random signals is equal to zero, whereas its trispectrum is not equal to zero, signal or system needs reconstructing from samples of the trispectrum of observation data. DFT algorithm for amplitude and phase reconstruction from trispectrum is proposed based on the bispectrum DFT algorithm. The magnitude and phase of the Fourier transform of a signal as well as those of the trispectrum are expanded into a series using a set of appropriate basis functions. Reconstruction is achieved by equating coefficients of like terms of these two expansions. Its advantage is that it only use the diagonal elements of amplitude and phase of the trispectrum, thus the computation is significantly reduced.</description><subject>amplitude reconstruction</subject><subject>discrete Fourier transform (DFT)</subject><subject>Discrete Fourier transforms</subject><subject>Image reconstruction</subject><subject>phase reconstruction</subject><subject>Reconstruction algorithms</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>Stochastic processes</subject><subject>trispectrum</subject><isbn>1612847714</isbn><isbn>9781612847719</isbn><isbn>1612847749</isbn><isbn>1612847730</isbn><isbn>9781612847740</isbn><isbn>9781612847733</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj81KAzEUhSMiqLUPIG7mBWZ689Mkdymj1ULFzexLkt7YSKdTMnHh2ztgod_mnG9z4DD2yKHhHHCxbj-6RgDnjQaQgPaK3XPNhVXGKLy-CFe3bD6O3zChNUqLd2zxsuoqd_gacir7vhpiVfZUlZzGE4WSf_oqUxiO41RDScPxgd1Edxhpfs4Z61avXftebz7f1u3zpk4IpUYlo3fKIQUbd-B3TgYruDcgzYQWJEBG0KSXyke31DEiGWnBCzIoUc7Y0_9sIqLtKafe5d_t-Z_8A3-HQ5o</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Yajun Li</creator><creator>Xinzhong Yan</creator><creator>Baokun Yu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201107</creationdate><title>DFT algorithm of the trispectrum reconstruction</title><author>Yajun Li ; Xinzhong Yan ; Baokun Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-943fba4a9ec8fd0bda3c821b703777762e203f06e654bfa56ff9e7380b2e79393</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>amplitude reconstruction</topic><topic>discrete Fourier transform (DFT)</topic><topic>Discrete Fourier transforms</topic><topic>Image reconstruction</topic><topic>phase reconstruction</topic><topic>Reconstruction algorithms</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>Stochastic processes</topic><topic>trispectrum</topic><toplevel>online_resources</toplevel><creatorcontrib>Yajun Li</creatorcontrib><creatorcontrib>Xinzhong Yan</creatorcontrib><creatorcontrib>Baokun Yu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yajun Li</au><au>Xinzhong Yan</au><au>Baokun Yu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>DFT algorithm of the trispectrum reconstruction</atitle><btitle>2011 International Conference on Multimedia Technology</btitle><stitle>ICMT</stitle><date>2011-07</date><risdate>2011</risdate><spage>4917</spage><epage>4919</epage><pages>4917-4919</pages><isbn>1612847714</isbn><isbn>9781612847719</isbn><eisbn>1612847749</eisbn><eisbn>1612847730</eisbn><eisbn>9781612847740</eisbn><eisbn>9781612847733</eisbn><abstract>As the bispectrum of the symmetric distribution random signals is equal to zero, whereas its trispectrum is not equal to zero, signal or system needs reconstructing from samples of the trispectrum of observation data. DFT algorithm for amplitude and phase reconstruction from trispectrum is proposed based on the bispectrum DFT algorithm. The magnitude and phase of the Fourier transform of a signal as well as those of the trispectrum are expanded into a series using a set of appropriate basis functions. Reconstruction is achieved by equating coefficients of like terms of these two expansions. Its advantage is that it only use the diagonal elements of amplitude and phase of the trispectrum, thus the computation is significantly reduced.</abstract><pub>IEEE</pub><doi>10.1109/ICMT.2011.6003098</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1612847714
ispartof 2011 International Conference on Multimedia Technology, 2011, p.4917-4919
issn
language eng
recordid cdi_ieee_primary_6003098
source IEEE Electronic Library (IEL) Conference Proceedings
subjects amplitude reconstruction
discrete Fourier transform (DFT)
Discrete Fourier transforms
Image reconstruction
phase reconstruction
Reconstruction algorithms
Signal processing
Signal processing algorithms
Stochastic processes
trispectrum
title DFT algorithm of the trispectrum reconstruction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T00%3A58%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=DFT%20algorithm%20of%20the%20trispectrum%20reconstruction&rft.btitle=2011%20International%20Conference%20on%20Multimedia%20Technology&rft.au=Yajun%20Li&rft.date=2011-07&rft.spage=4917&rft.epage=4919&rft.pages=4917-4919&rft.isbn=1612847714&rft.isbn_list=9781612847719&rft_id=info:doi/10.1109/ICMT.2011.6003098&rft_dat=%3Cieee_6IE%3E6003098%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1612847749&rft.eisbn_list=1612847730&rft.eisbn_list=9781612847740&rft.eisbn_list=9781612847733&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6003098&rfr_iscdi=true