A modified color image segmentation method based on FCM and region merging
A new color image segmentation algorithm based on histogram, FCM clustering, and region merging is proposed in this paper. First, the RGB space is transformed to HSV space, and the image is divided into non-singular points and singular points in accordance with the saturation. Second, characteristic...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3813 |
---|---|
container_issue | |
container_start_page | 3810 |
container_title | |
container_volume | |
creator | Shunyong Zhou Wenling Xie Cuixia Guo Bo Hu |
description | A new color image segmentation algorithm based on histogram, FCM clustering, and region merging is proposed in this paper. First, the RGB space is transformed to HSV space, and the image is divided into non-singular points and singular points in accordance with the saturation. Second, characteristics of the image pixel are mapped to the one-dimensional histogram, we can determine the number of the cluster and the initial cluster center thought peaks selection algorithm, non-singular points and singular points are separately clustering by FCM,. Finally, we merger regions by image spatial information to eliminate the scattered small area after clustering, which overcomes the over segmentation problem in FCM, and increases the ability of anti noise. Experimental results show that this method not only can make the partition consistent with the human visual psychology, but also overcome the singularity of HSV space, and significantly reduce computational complexity and greatly improve the speed of the algorithm, realize automatically dividing images without manual intervention. |
doi_str_mv | 10.1109/ICMT.2011.6002920 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6002920</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6002920</ieee_id><sourcerecordid>6002920</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-7df93c7de40b0bde819907b04d6dfb966dd85122db7d2a518aba60797a4087043</originalsourceid><addsrcrecordid>eNpFT01Lw0AUXBFBrf0B4mX_QOJ7m-1-HEuwttLiJfey2_cSV5pEklz89wZacC7DMMMwI8QzQo4I_nVXHqpcAWJuAJRXcCMe0aBy2lrtb_8F6nuxHMdvmGGML5x_EB9r2faU6sQkT_25H2RqQ8Ny5KblbgpT6jvZ8vTVk4xhnFOz3pQHGTqSAzcXe2hS1zyJuzqcR15eeSGqzVtVbrP95_uuXO-z5GHKLNW-OFliDREisUPvwUbQZKiO3hgit0KlKFpSYYUuxGDAehs0OAu6WIiXS21i5uPPMO8dfo_X68Uf13lMXg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A modified color image segmentation method based on FCM and region merging</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shunyong Zhou ; Wenling Xie ; Cuixia Guo ; Bo Hu</creator><creatorcontrib>Shunyong Zhou ; Wenling Xie ; Cuixia Guo ; Bo Hu</creatorcontrib><description>A new color image segmentation algorithm based on histogram, FCM clustering, and region merging is proposed in this paper. First, the RGB space is transformed to HSV space, and the image is divided into non-singular points and singular points in accordance with the saturation. Second, characteristics of the image pixel are mapped to the one-dimensional histogram, we can determine the number of the cluster and the initial cluster center thought peaks selection algorithm, non-singular points and singular points are separately clustering by FCM,. Finally, we merger regions by image spatial information to eliminate the scattered small area after clustering, which overcomes the over segmentation problem in FCM, and increases the ability of anti noise. Experimental results show that this method not only can make the partition consistent with the human visual psychology, but also overcome the singularity of HSV space, and significantly reduce computational complexity and greatly improve the speed of the algorithm, realize automatically dividing images without manual intervention.</description><identifier>ISBN: 1612847714</identifier><identifier>ISBN: 9781612847719</identifier><identifier>EISBN: 1612847749</identifier><identifier>EISBN: 1612847730</identifier><identifier>EISBN: 9781612847740</identifier><identifier>EISBN: 9781612847733</identifier><identifier>DOI: 10.1109/ICMT.2011.6002920</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering algorithms ; Color ; color histogram ; color image segmentation ; fuzzy clustering ; Histograms ; Image color analysis ; Image edge detection ; Image segmentation ; Partitioning algorithms ; region merger component</subject><ispartof>2011 International Conference on Multimedia Technology, 2011, p.3810-3813</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6002920$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6002920$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shunyong Zhou</creatorcontrib><creatorcontrib>Wenling Xie</creatorcontrib><creatorcontrib>Cuixia Guo</creatorcontrib><creatorcontrib>Bo Hu</creatorcontrib><title>A modified color image segmentation method based on FCM and region merging</title><title>2011 International Conference on Multimedia Technology</title><addtitle>ICMT</addtitle><description>A new color image segmentation algorithm based on histogram, FCM clustering, and region merging is proposed in this paper. First, the RGB space is transformed to HSV space, and the image is divided into non-singular points and singular points in accordance with the saturation. Second, characteristics of the image pixel are mapped to the one-dimensional histogram, we can determine the number of the cluster and the initial cluster center thought peaks selection algorithm, non-singular points and singular points are separately clustering by FCM,. Finally, we merger regions by image spatial information to eliminate the scattered small area after clustering, which overcomes the over segmentation problem in FCM, and increases the ability of anti noise. Experimental results show that this method not only can make the partition consistent with the human visual psychology, but also overcome the singularity of HSV space, and significantly reduce computational complexity and greatly improve the speed of the algorithm, realize automatically dividing images without manual intervention.</description><subject>Clustering algorithms</subject><subject>Color</subject><subject>color histogram</subject><subject>color image segmentation</subject><subject>fuzzy clustering</subject><subject>Histograms</subject><subject>Image color analysis</subject><subject>Image edge detection</subject><subject>Image segmentation</subject><subject>Partitioning algorithms</subject><subject>region merger component</subject><isbn>1612847714</isbn><isbn>9781612847719</isbn><isbn>1612847749</isbn><isbn>1612847730</isbn><isbn>9781612847740</isbn><isbn>9781612847733</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFT01Lw0AUXBFBrf0B4mX_QOJ7m-1-HEuwttLiJfey2_cSV5pEklz89wZacC7DMMMwI8QzQo4I_nVXHqpcAWJuAJRXcCMe0aBy2lrtb_8F6nuxHMdvmGGML5x_EB9r2faU6sQkT_25H2RqQ8Ny5KblbgpT6jvZ8vTVk4xhnFOz3pQHGTqSAzcXe2hS1zyJuzqcR15eeSGqzVtVbrP95_uuXO-z5GHKLNW-OFliDREisUPvwUbQZKiO3hgit0KlKFpSYYUuxGDAehs0OAu6WIiXS21i5uPPMO8dfo_X68Uf13lMXg</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Shunyong Zhou</creator><creator>Wenling Xie</creator><creator>Cuixia Guo</creator><creator>Bo Hu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201107</creationdate><title>A modified color image segmentation method based on FCM and region merging</title><author>Shunyong Zhou ; Wenling Xie ; Cuixia Guo ; Bo Hu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-7df93c7de40b0bde819907b04d6dfb966dd85122db7d2a518aba60797a4087043</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Clustering algorithms</topic><topic>Color</topic><topic>color histogram</topic><topic>color image segmentation</topic><topic>fuzzy clustering</topic><topic>Histograms</topic><topic>Image color analysis</topic><topic>Image edge detection</topic><topic>Image segmentation</topic><topic>Partitioning algorithms</topic><topic>region merger component</topic><toplevel>online_resources</toplevel><creatorcontrib>Shunyong Zhou</creatorcontrib><creatorcontrib>Wenling Xie</creatorcontrib><creatorcontrib>Cuixia Guo</creatorcontrib><creatorcontrib>Bo Hu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shunyong Zhou</au><au>Wenling Xie</au><au>Cuixia Guo</au><au>Bo Hu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A modified color image segmentation method based on FCM and region merging</atitle><btitle>2011 International Conference on Multimedia Technology</btitle><stitle>ICMT</stitle><date>2011-07</date><risdate>2011</risdate><spage>3810</spage><epage>3813</epage><pages>3810-3813</pages><isbn>1612847714</isbn><isbn>9781612847719</isbn><eisbn>1612847749</eisbn><eisbn>1612847730</eisbn><eisbn>9781612847740</eisbn><eisbn>9781612847733</eisbn><abstract>A new color image segmentation algorithm based on histogram, FCM clustering, and region merging is proposed in this paper. First, the RGB space is transformed to HSV space, and the image is divided into non-singular points and singular points in accordance with the saturation. Second, characteristics of the image pixel are mapped to the one-dimensional histogram, we can determine the number of the cluster and the initial cluster center thought peaks selection algorithm, non-singular points and singular points are separately clustering by FCM,. Finally, we merger regions by image spatial information to eliminate the scattered small area after clustering, which overcomes the over segmentation problem in FCM, and increases the ability of anti noise. Experimental results show that this method not only can make the partition consistent with the human visual psychology, but also overcome the singularity of HSV space, and significantly reduce computational complexity and greatly improve the speed of the algorithm, realize automatically dividing images without manual intervention.</abstract><pub>IEEE</pub><doi>10.1109/ICMT.2011.6002920</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1612847714 |
ispartof | 2011 International Conference on Multimedia Technology, 2011, p.3810-3813 |
issn | |
language | eng |
recordid | cdi_ieee_primary_6002920 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Clustering algorithms Color color histogram color image segmentation fuzzy clustering Histograms Image color analysis Image edge detection Image segmentation Partitioning algorithms region merger component |
title | A modified color image segmentation method based on FCM and region merging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T14%3A49%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20modified%20color%20image%20segmentation%20method%20based%20on%20FCM%20and%20region%20merging&rft.btitle=2011%20International%20Conference%20on%20Multimedia%20Technology&rft.au=Shunyong%20Zhou&rft.date=2011-07&rft.spage=3810&rft.epage=3813&rft.pages=3810-3813&rft.isbn=1612847714&rft.isbn_list=9781612847719&rft_id=info:doi/10.1109/ICMT.2011.6002920&rft_dat=%3Cieee_6IE%3E6002920%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1612847749&rft.eisbn_list=1612847730&rft.eisbn_list=9781612847740&rft.eisbn_list=9781612847733&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6002920&rfr_iscdi=true |