A paper currency number recognition based on fast Adaboost training algorithm

As Adaboost has a good performance in classification, it is widely used in pattern recognition. However it takes long time to generate the weak classifiers. For improving the training speed, this paper presents a fast Adaboost weak classifier training algorithm. Firstly, sort the Eigen values to an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hai-dong Wang, Leye Gu, Linping Du
Format: Tagungsbericht
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4775
container_issue
container_start_page 4772
container_title
container_volume
creator Hai-dong Wang
Leye Gu
Linping Du
description As Adaboost has a good performance in classification, it is widely used in pattern recognition. However it takes long time to generate the weak classifiers. For improving the training speed, this paper presents a fast Adaboost weak classifier training algorithm. Firstly, sort the Eigen values to an array from small to large, and then traverse the sorted array once to find the best threshold and bias. The experimental results show that this improved algorithm can increase the training speed by 6 to 8 times.
doi_str_mv 10.1109/ICMT.2011.6002079
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6002079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6002079</ieee_id><sourcerecordid>6002079</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-f73040aabf2b7b396ba650ce7912fb928b178a73db6a87bc08b040a60433213</originalsourceid><addsrcrecordid>eNpFj91Kw0AUhFdEUGsfQLzZF0g8uxv35zIUfwotgvS-nJNs4kqzCZv0om9vxELnZuaDYWAYexSQCwHueb3a7nIJQuQaQIJxV-xeaCFtYUzhri8gilu2HMcfmKW1U9bdsW3JBxx84tUxJR-rE4_HjmZOvurbGKbQR044-prPocFx4mWN1PdzmBKGGGLL8dD2KUzf3QO7afAw-uXZF-zr7XW3-sg2n-_rVbnJgoMpa4yCAhCpkWRIOU2oX6DyxgnZkJOWhLFoVE0araEKLP31NRRKSaEW7Ol_NHjv90MKHabT_vxd_QLYl02k</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A paper currency number recognition based on fast Adaboost training algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hai-dong Wang ; Leye Gu ; Linping Du</creator><creatorcontrib>Hai-dong Wang ; Leye Gu ; Linping Du</creatorcontrib><description>As Adaboost has a good performance in classification, it is widely used in pattern recognition. However it takes long time to generate the weak classifiers. For improving the training speed, this paper presents a fast Adaboost weak classifier training algorithm. Firstly, sort the Eigen values to an array from small to large, and then traverse the sorted array once to find the best threshold and bias. The experimental results show that this improved algorithm can increase the training speed by 6 to 8 times.</description><identifier>ISBN: 1612847714</identifier><identifier>ISBN: 9781612847719</identifier><identifier>EISBN: 1612847749</identifier><identifier>EISBN: 1612847730</identifier><identifier>EISBN: 9781612847740</identifier><identifier>EISBN: 9781612847733</identifier><identifier>DOI: 10.1109/ICMT.2011.6002079</identifier><language>chi ; eng</language><publisher>IEEE</publisher><subject>Arrays ; Binary trees ; Classification algorithms ; Computer applications ; Face detection ; fast training algorithm ; optimal threshold ; Pattern recognition ; Training ; weak classifier</subject><ispartof>2011 International Conference on Multimedia Technology, 2011, p.4772-4775</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6002079$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6002079$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hai-dong Wang</creatorcontrib><creatorcontrib>Leye Gu</creatorcontrib><creatorcontrib>Linping Du</creatorcontrib><title>A paper currency number recognition based on fast Adaboost training algorithm</title><title>2011 International Conference on Multimedia Technology</title><addtitle>ICMT</addtitle><description>As Adaboost has a good performance in classification, it is widely used in pattern recognition. However it takes long time to generate the weak classifiers. For improving the training speed, this paper presents a fast Adaboost weak classifier training algorithm. Firstly, sort the Eigen values to an array from small to large, and then traverse the sorted array once to find the best threshold and bias. The experimental results show that this improved algorithm can increase the training speed by 6 to 8 times.</description><subject>Arrays</subject><subject>Binary trees</subject><subject>Classification algorithms</subject><subject>Computer applications</subject><subject>Face detection</subject><subject>fast training algorithm</subject><subject>optimal threshold</subject><subject>Pattern recognition</subject><subject>Training</subject><subject>weak classifier</subject><isbn>1612847714</isbn><isbn>9781612847719</isbn><isbn>1612847749</isbn><isbn>1612847730</isbn><isbn>9781612847740</isbn><isbn>9781612847733</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj91Kw0AUhFdEUGsfQLzZF0g8uxv35zIUfwotgvS-nJNs4kqzCZv0om9vxELnZuaDYWAYexSQCwHueb3a7nIJQuQaQIJxV-xeaCFtYUzhri8gilu2HMcfmKW1U9bdsW3JBxx84tUxJR-rE4_HjmZOvurbGKbQR044-prPocFx4mWN1PdzmBKGGGLL8dD2KUzf3QO7afAw-uXZF-zr7XW3-sg2n-_rVbnJgoMpa4yCAhCpkWRIOU2oX6DyxgnZkJOWhLFoVE0araEKLP31NRRKSaEW7Ol_NHjv90MKHabT_vxd_QLYl02k</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Hai-dong Wang</creator><creator>Leye Gu</creator><creator>Linping Du</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201107</creationdate><title>A paper currency number recognition based on fast Adaboost training algorithm</title><author>Hai-dong Wang ; Leye Gu ; Linping Du</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-f73040aabf2b7b396ba650ce7912fb928b178a73db6a87bc08b040a60433213</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>chi ; eng</language><creationdate>2011</creationdate><topic>Arrays</topic><topic>Binary trees</topic><topic>Classification algorithms</topic><topic>Computer applications</topic><topic>Face detection</topic><topic>fast training algorithm</topic><topic>optimal threshold</topic><topic>Pattern recognition</topic><topic>Training</topic><topic>weak classifier</topic><toplevel>online_resources</toplevel><creatorcontrib>Hai-dong Wang</creatorcontrib><creatorcontrib>Leye Gu</creatorcontrib><creatorcontrib>Linping Du</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hai-dong Wang</au><au>Leye Gu</au><au>Linping Du</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A paper currency number recognition based on fast Adaboost training algorithm</atitle><btitle>2011 International Conference on Multimedia Technology</btitle><stitle>ICMT</stitle><date>2011-07</date><risdate>2011</risdate><spage>4772</spage><epage>4775</epage><pages>4772-4775</pages><isbn>1612847714</isbn><isbn>9781612847719</isbn><eisbn>1612847749</eisbn><eisbn>1612847730</eisbn><eisbn>9781612847740</eisbn><eisbn>9781612847733</eisbn><abstract>As Adaboost has a good performance in classification, it is widely used in pattern recognition. However it takes long time to generate the weak classifiers. For improving the training speed, this paper presents a fast Adaboost weak classifier training algorithm. Firstly, sort the Eigen values to an array from small to large, and then traverse the sorted array once to find the best threshold and bias. The experimental results show that this improved algorithm can increase the training speed by 6 to 8 times.</abstract><pub>IEEE</pub><doi>10.1109/ICMT.2011.6002079</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1612847714
ispartof 2011 International Conference on Multimedia Technology, 2011, p.4772-4775
issn
language chi ; eng
recordid cdi_ieee_primary_6002079
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Arrays
Binary trees
Classification algorithms
Computer applications
Face detection
fast training algorithm
optimal threshold
Pattern recognition
Training
weak classifier
title A paper currency number recognition based on fast Adaboost training algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A28%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20paper%20currency%20number%20recognition%20based%20on%20fast%20Adaboost%20training%20algorithm&rft.btitle=2011%20International%20Conference%20on%20Multimedia%20Technology&rft.au=Hai-dong%20Wang&rft.date=2011-07&rft.spage=4772&rft.epage=4775&rft.pages=4772-4775&rft.isbn=1612847714&rft.isbn_list=9781612847719&rft_id=info:doi/10.1109/ICMT.2011.6002079&rft_dat=%3Cieee_6IE%3E6002079%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1612847749&rft.eisbn_list=1612847730&rft.eisbn_list=9781612847740&rft.eisbn_list=9781612847733&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6002079&rfr_iscdi=true