A paper currency number recognition based on fast Adaboost training algorithm
As Adaboost has a good performance in classification, it is widely used in pattern recognition. However it takes long time to generate the weak classifiers. For improving the training speed, this paper presents a fast Adaboost weak classifier training algorithm. Firstly, sort the Eigen values to an...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4775 |
---|---|
container_issue | |
container_start_page | 4772 |
container_title | |
container_volume | |
creator | Hai-dong Wang Leye Gu Linping Du |
description | As Adaboost has a good performance in classification, it is widely used in pattern recognition. However it takes long time to generate the weak classifiers. For improving the training speed, this paper presents a fast Adaboost weak classifier training algorithm. Firstly, sort the Eigen values to an array from small to large, and then traverse the sorted array once to find the best threshold and bias. The experimental results show that this improved algorithm can increase the training speed by 6 to 8 times. |
doi_str_mv | 10.1109/ICMT.2011.6002079 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_6002079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6002079</ieee_id><sourcerecordid>6002079</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-f73040aabf2b7b396ba650ce7912fb928b178a73db6a87bc08b040a60433213</originalsourceid><addsrcrecordid>eNpFj91Kw0AUhFdEUGsfQLzZF0g8uxv35zIUfwotgvS-nJNs4kqzCZv0om9vxELnZuaDYWAYexSQCwHueb3a7nIJQuQaQIJxV-xeaCFtYUzhri8gilu2HMcfmKW1U9bdsW3JBxx84tUxJR-rE4_HjmZOvurbGKbQR044-prPocFx4mWN1PdzmBKGGGLL8dD2KUzf3QO7afAw-uXZF-zr7XW3-sg2n-_rVbnJgoMpa4yCAhCpkWRIOU2oX6DyxgnZkJOWhLFoVE0araEKLP31NRRKSaEW7Ol_NHjv90MKHabT_vxd_QLYl02k</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A paper currency number recognition based on fast Adaboost training algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hai-dong Wang ; Leye Gu ; Linping Du</creator><creatorcontrib>Hai-dong Wang ; Leye Gu ; Linping Du</creatorcontrib><description>As Adaboost has a good performance in classification, it is widely used in pattern recognition. However it takes long time to generate the weak classifiers. For improving the training speed, this paper presents a fast Adaboost weak classifier training algorithm. Firstly, sort the Eigen values to an array from small to large, and then traverse the sorted array once to find the best threshold and bias. The experimental results show that this improved algorithm can increase the training speed by 6 to 8 times.</description><identifier>ISBN: 1612847714</identifier><identifier>ISBN: 9781612847719</identifier><identifier>EISBN: 1612847749</identifier><identifier>EISBN: 1612847730</identifier><identifier>EISBN: 9781612847740</identifier><identifier>EISBN: 9781612847733</identifier><identifier>DOI: 10.1109/ICMT.2011.6002079</identifier><language>chi ; eng</language><publisher>IEEE</publisher><subject>Arrays ; Binary trees ; Classification algorithms ; Computer applications ; Face detection ; fast training algorithm ; optimal threshold ; Pattern recognition ; Training ; weak classifier</subject><ispartof>2011 International Conference on Multimedia Technology, 2011, p.4772-4775</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6002079$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6002079$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hai-dong Wang</creatorcontrib><creatorcontrib>Leye Gu</creatorcontrib><creatorcontrib>Linping Du</creatorcontrib><title>A paper currency number recognition based on fast Adaboost training algorithm</title><title>2011 International Conference on Multimedia Technology</title><addtitle>ICMT</addtitle><description>As Adaboost has a good performance in classification, it is widely used in pattern recognition. However it takes long time to generate the weak classifiers. For improving the training speed, this paper presents a fast Adaboost weak classifier training algorithm. Firstly, sort the Eigen values to an array from small to large, and then traverse the sorted array once to find the best threshold and bias. The experimental results show that this improved algorithm can increase the training speed by 6 to 8 times.</description><subject>Arrays</subject><subject>Binary trees</subject><subject>Classification algorithms</subject><subject>Computer applications</subject><subject>Face detection</subject><subject>fast training algorithm</subject><subject>optimal threshold</subject><subject>Pattern recognition</subject><subject>Training</subject><subject>weak classifier</subject><isbn>1612847714</isbn><isbn>9781612847719</isbn><isbn>1612847749</isbn><isbn>1612847730</isbn><isbn>9781612847740</isbn><isbn>9781612847733</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj91Kw0AUhFdEUGsfQLzZF0g8uxv35zIUfwotgvS-nJNs4kqzCZv0om9vxELnZuaDYWAYexSQCwHueb3a7nIJQuQaQIJxV-xeaCFtYUzhri8gilu2HMcfmKW1U9bdsW3JBxx84tUxJR-rE4_HjmZOvurbGKbQR044-prPocFx4mWN1PdzmBKGGGLL8dD2KUzf3QO7afAw-uXZF-zr7XW3-sg2n-_rVbnJgoMpa4yCAhCpkWRIOU2oX6DyxgnZkJOWhLFoVE0araEKLP31NRRKSaEW7Ol_NHjv90MKHabT_vxd_QLYl02k</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Hai-dong Wang</creator><creator>Leye Gu</creator><creator>Linping Du</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201107</creationdate><title>A paper currency number recognition based on fast Adaboost training algorithm</title><author>Hai-dong Wang ; Leye Gu ; Linping Du</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-f73040aabf2b7b396ba650ce7912fb928b178a73db6a87bc08b040a60433213</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>chi ; eng</language><creationdate>2011</creationdate><topic>Arrays</topic><topic>Binary trees</topic><topic>Classification algorithms</topic><topic>Computer applications</topic><topic>Face detection</topic><topic>fast training algorithm</topic><topic>optimal threshold</topic><topic>Pattern recognition</topic><topic>Training</topic><topic>weak classifier</topic><toplevel>online_resources</toplevel><creatorcontrib>Hai-dong Wang</creatorcontrib><creatorcontrib>Leye Gu</creatorcontrib><creatorcontrib>Linping Du</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hai-dong Wang</au><au>Leye Gu</au><au>Linping Du</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A paper currency number recognition based on fast Adaboost training algorithm</atitle><btitle>2011 International Conference on Multimedia Technology</btitle><stitle>ICMT</stitle><date>2011-07</date><risdate>2011</risdate><spage>4772</spage><epage>4775</epage><pages>4772-4775</pages><isbn>1612847714</isbn><isbn>9781612847719</isbn><eisbn>1612847749</eisbn><eisbn>1612847730</eisbn><eisbn>9781612847740</eisbn><eisbn>9781612847733</eisbn><abstract>As Adaboost has a good performance in classification, it is widely used in pattern recognition. However it takes long time to generate the weak classifiers. For improving the training speed, this paper presents a fast Adaboost weak classifier training algorithm. Firstly, sort the Eigen values to an array from small to large, and then traverse the sorted array once to find the best threshold and bias. The experimental results show that this improved algorithm can increase the training speed by 6 to 8 times.</abstract><pub>IEEE</pub><doi>10.1109/ICMT.2011.6002079</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1612847714 |
ispartof | 2011 International Conference on Multimedia Technology, 2011, p.4772-4775 |
issn | |
language | chi ; eng |
recordid | cdi_ieee_primary_6002079 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Arrays Binary trees Classification algorithms Computer applications Face detection fast training algorithm optimal threshold Pattern recognition Training weak classifier |
title | A paper currency number recognition based on fast Adaboost training algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A28%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20paper%20currency%20number%20recognition%20based%20on%20fast%20Adaboost%20training%20algorithm&rft.btitle=2011%20International%20Conference%20on%20Multimedia%20Technology&rft.au=Hai-dong%20Wang&rft.date=2011-07&rft.spage=4772&rft.epage=4775&rft.pages=4772-4775&rft.isbn=1612847714&rft.isbn_list=9781612847719&rft_id=info:doi/10.1109/ICMT.2011.6002079&rft_dat=%3Cieee_6IE%3E6002079%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1612847749&rft.eisbn_list=1612847730&rft.eisbn_list=9781612847740&rft.eisbn_list=9781612847733&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=6002079&rfr_iscdi=true |