A data-aware workflow scheduling algorithm for heterogeneous distributed systems
The workflow scheduling problem in heterogeneous distributed systems is hard to solve due to both intermediate data transfer time and the computation time for each task being considered. The heterogeneity of the computing power of distributed computational sites and the band width between them makes...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 120 |
---|---|
container_issue | |
container_start_page | 114 |
container_title | |
container_volume | |
creator | Dengpan Yin Kosar, Tevfik |
description | The workflow scheduling problem in heterogeneous distributed systems is hard to solve due to both intermediate data transfer time and the computation time for each task being considered. The heterogeneity of the computing power of distributed computational sites and the band width between them makes the scheduling problem challenging. In this study, we improve a heuristic-based data-aware algorithm to find the optimal scheduling so that the turnaround time of the workflow is minimized. Our improved algorithm outperforms the existing algorithms in both performance and time efficiency in most cases. We also extend our algorithm to solve the co-scheduling problem. In this problem, each task of the workflow can request data from a remote data site before its execution; and also store important intermediate data to a remote data site after the execution. The results show that the turnaround time of the workflow can be shortened significantly using our data-aware algorithm compared to the existing optimal algorithms. |
doi_str_mv | 10.1109/HPCSim.2011.5999814 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5999814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5999814</ieee_id><sourcerecordid>5999814</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-35e6b6267d6a191e2411069a51d7d32eaa7ac2be08265144f7196e8da356f45d3</originalsourceid><addsrcrecordid>eNotj0FOwzAQRc0CCSg9QTe-QILHdpx4WUVAkSpRie6rST1JDEmDbFdRb08l-jdv9_Q-YysQOYCwL5td_eXHXAqAvLDWVqDv2BMYkJVWldQPbBnjt7jOGAtGPLLdmjtMmOGMgfg8hZ92mGYejz258-BPHcehm4JP_cjbKfCeEoWpoxNN58idjyn45pzI8XiJicb4zO5bHCItb1yw_dvrvt5k28_3j3q9zbwVKVMFmcZIUzqDYIGkvvYbiwW40ilJiCUeZUOikqYArdsSrKHKoSpMqwunFmz1r_VEdPgNfsRwOdw-qz932E7F</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A data-aware workflow scheduling algorithm for heterogeneous distributed systems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dengpan Yin ; Kosar, Tevfik</creator><creatorcontrib>Dengpan Yin ; Kosar, Tevfik</creatorcontrib><description>The workflow scheduling problem in heterogeneous distributed systems is hard to solve due to both intermediate data transfer time and the computation time for each task being considered. The heterogeneity of the computing power of distributed computational sites and the band width between them makes the scheduling problem challenging. In this study, we improve a heuristic-based data-aware algorithm to find the optimal scheduling so that the turnaround time of the workflow is minimized. Our improved algorithm outperforms the existing algorithms in both performance and time efficiency in most cases. We also extend our algorithm to solve the co-scheduling problem. In this problem, each task of the workflow can request data from a remote data site before its execution; and also store important intermediate data to a remote data site after the execution. The results show that the turnaround time of the workflow can be shortened significantly using our data-aware algorithm compared to the existing optimal algorithms.</description><identifier>EISBN: 1612843824</identifier><identifier>EISBN: 9781612843834</identifier><identifier>EISBN: 1612843832</identifier><identifier>EISBN: 9781612843827</identifier><identifier>DOI: 10.1109/HPCSim.2011.5999814</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bandwidth ; Data intensive supercomputing ; Distributed databases ; Grid and cluster computing ; Large scale scientific computing ; Large scale systems ; Optimal scheduling ; Processor scheduling ; Program processors ; Scheduling ; Search problems ; Workflow scheduling</subject><ispartof>2011 International Conference on High Performance Computing & Simulation, 2011, p.114-120</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5999814$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5999814$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dengpan Yin</creatorcontrib><creatorcontrib>Kosar, Tevfik</creatorcontrib><title>A data-aware workflow scheduling algorithm for heterogeneous distributed systems</title><title>2011 International Conference on High Performance Computing & Simulation</title><addtitle>HPCSim</addtitle><description>The workflow scheduling problem in heterogeneous distributed systems is hard to solve due to both intermediate data transfer time and the computation time for each task being considered. The heterogeneity of the computing power of distributed computational sites and the band width between them makes the scheduling problem challenging. In this study, we improve a heuristic-based data-aware algorithm to find the optimal scheduling so that the turnaround time of the workflow is minimized. Our improved algorithm outperforms the existing algorithms in both performance and time efficiency in most cases. We also extend our algorithm to solve the co-scheduling problem. In this problem, each task of the workflow can request data from a remote data site before its execution; and also store important intermediate data to a remote data site after the execution. The results show that the turnaround time of the workflow can be shortened significantly using our data-aware algorithm compared to the existing optimal algorithms.</description><subject>Bandwidth</subject><subject>Data intensive supercomputing</subject><subject>Distributed databases</subject><subject>Grid and cluster computing</subject><subject>Large scale scientific computing</subject><subject>Large scale systems</subject><subject>Optimal scheduling</subject><subject>Processor scheduling</subject><subject>Program processors</subject><subject>Scheduling</subject><subject>Search problems</subject><subject>Workflow scheduling</subject><isbn>1612843824</isbn><isbn>9781612843834</isbn><isbn>1612843832</isbn><isbn>9781612843827</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0FOwzAQRc0CCSg9QTe-QILHdpx4WUVAkSpRie6rST1JDEmDbFdRb08l-jdv9_Q-YysQOYCwL5td_eXHXAqAvLDWVqDv2BMYkJVWldQPbBnjt7jOGAtGPLLdmjtMmOGMgfg8hZ92mGYejz258-BPHcehm4JP_cjbKfCeEoWpoxNN58idjyn45pzI8XiJicb4zO5bHCItb1yw_dvrvt5k28_3j3q9zbwVKVMFmcZIUzqDYIGkvvYbiwW40ilJiCUeZUOikqYArdsSrKHKoSpMqwunFmz1r_VEdPgNfsRwOdw-qz932E7F</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Dengpan Yin</creator><creator>Kosar, Tevfik</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201107</creationdate><title>A data-aware workflow scheduling algorithm for heterogeneous distributed systems</title><author>Dengpan Yin ; Kosar, Tevfik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-35e6b6267d6a191e2411069a51d7d32eaa7ac2be08265144f7196e8da356f45d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Bandwidth</topic><topic>Data intensive supercomputing</topic><topic>Distributed databases</topic><topic>Grid and cluster computing</topic><topic>Large scale scientific computing</topic><topic>Large scale systems</topic><topic>Optimal scheduling</topic><topic>Processor scheduling</topic><topic>Program processors</topic><topic>Scheduling</topic><topic>Search problems</topic><topic>Workflow scheduling</topic><toplevel>online_resources</toplevel><creatorcontrib>Dengpan Yin</creatorcontrib><creatorcontrib>Kosar, Tevfik</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dengpan Yin</au><au>Kosar, Tevfik</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A data-aware workflow scheduling algorithm for heterogeneous distributed systems</atitle><btitle>2011 International Conference on High Performance Computing & Simulation</btitle><stitle>HPCSim</stitle><date>2011-07</date><risdate>2011</risdate><spage>114</spage><epage>120</epage><pages>114-120</pages><eisbn>1612843824</eisbn><eisbn>9781612843834</eisbn><eisbn>1612843832</eisbn><eisbn>9781612843827</eisbn><abstract>The workflow scheduling problem in heterogeneous distributed systems is hard to solve due to both intermediate data transfer time and the computation time for each task being considered. The heterogeneity of the computing power of distributed computational sites and the band width between them makes the scheduling problem challenging. In this study, we improve a heuristic-based data-aware algorithm to find the optimal scheduling so that the turnaround time of the workflow is minimized. Our improved algorithm outperforms the existing algorithms in both performance and time efficiency in most cases. We also extend our algorithm to solve the co-scheduling problem. In this problem, each task of the workflow can request data from a remote data site before its execution; and also store important intermediate data to a remote data site after the execution. The results show that the turnaround time of the workflow can be shortened significantly using our data-aware algorithm compared to the existing optimal algorithms.</abstract><pub>IEEE</pub><doi>10.1109/HPCSim.2011.5999814</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISBN: 1612843824 |
ispartof | 2011 International Conference on High Performance Computing & Simulation, 2011, p.114-120 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5999814 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Bandwidth Data intensive supercomputing Distributed databases Grid and cluster computing Large scale scientific computing Large scale systems Optimal scheduling Processor scheduling Program processors Scheduling Search problems Workflow scheduling |
title | A data-aware workflow scheduling algorithm for heterogeneous distributed systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A38%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20data-aware%20workflow%20scheduling%20algorithm%20for%20heterogeneous%20distributed%20systems&rft.btitle=2011%20International%20Conference%20on%20High%20Performance%20Computing%20&%20Simulation&rft.au=Dengpan%20Yin&rft.date=2011-07&rft.spage=114&rft.epage=120&rft.pages=114-120&rft_id=info:doi/10.1109/HPCSim.2011.5999814&rft_dat=%3Cieee_6IE%3E5999814%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1612843824&rft.eisbn_list=9781612843834&rft.eisbn_list=1612843832&rft.eisbn_list=9781612843827&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5999814&rfr_iscdi=true |