A 2-D decomposition based parallelization of AIM for 3-D BIOEM problems

A novel parallelization of the adaptive integral method (AIM) is presented for accelerating the large-scale solution of volume integral equations pertinent to bioelectromagnetics (BIOEM) problems. The proposed method improves the parallel scalability of AIM by (i) using different workload distributi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fangzhou Wei, Yilmaz, A. E.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3161
container_issue
container_start_page 3158
container_title
container_volume
creator Fangzhou Wei
Yilmaz, A. E.
description A novel parallelization of the adaptive integral method (AIM) is presented for accelerating the large-scale solution of volume integral equations pertinent to bioelectromagnetics (BIOEM) problems. The proposed method improves the parallel scalability of AIM by (i) using different workload distribution strategies to load balance the different steps of the algorithm (rather than a single global decomposition strategy) and (ii) using a 2-D rather than a 1-D stencil decomposition of the auxiliary grid to parallelize the 3-D FFTs and the related anterpolation/interpolation steps. With the proposed modifications, the maximum number of processes that can be used effectively scales as P max ~ N 2/3 , where N denotes the number of volumetric unknowns. Numerical results demonstrate the scalability of the method and its application to BIOEM problems.
doi_str_mv 10.1109/APS.2011.5997203
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5997203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5997203</ieee_id><sourcerecordid>5997203</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-5b74c4e27397321fec42c577674e262603b616c505c57d5d805d39566a913b993</originalsourceid><addsrcrecordid>eNo1kE1Lw0AQhtcvsNbcBS_7BxJ39rNzjG2tgZYK9l42yQZWEjdke9Ff76J1Li88D_PCDCEPwAoAhk_l23vBGUChEA1n4oLcgeRSotJCX5IZoDQ5SIQrkqFZ_DturpNTnOcCtbolWYwfLE0SCy5mZFNSnq9o65owjCH6kw-ftLbRtXS0k-171_tv-0tDR8tqR7swUZFWnqv9ekfHKdS9G-I9uelsH112zjk5vKwPy9d8u99Uy3Kbe2SnXNVGNtJxI9AIDp1rJG-UMdokqLlmotagG8VUoq1qF0y1Il2hLYKoEcWcPP7VeufccZz8YKev4_kl4gcijkyD</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A 2-D decomposition based parallelization of AIM for 3-D BIOEM problems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Fangzhou Wei ; Yilmaz, A. E.</creator><creatorcontrib>Fangzhou Wei ; Yilmaz, A. E.</creatorcontrib><description>A novel parallelization of the adaptive integral method (AIM) is presented for accelerating the large-scale solution of volume integral equations pertinent to bioelectromagnetics (BIOEM) problems. The proposed method improves the parallel scalability of AIM by (i) using different workload distribution strategies to load balance the different steps of the algorithm (rather than a single global decomposition strategy) and (ii) using a 2-D rather than a 1-D stencil decomposition of the auxiliary grid to parallelize the 3-D FFTs and the related anterpolation/interpolation steps. With the proposed modifications, the maximum number of processes that can be used effectively scales as P max ~ N 2/3 , where N denotes the number of volumetric unknowns. Numerical results demonstrate the scalability of the method and its application to BIOEM problems.</description><identifier>ISSN: 1522-3965</identifier><identifier>ISBN: 9781424495627</identifier><identifier>ISBN: 1424495628</identifier><identifier>EISSN: 1947-1491</identifier><identifier>EISBN: 1424495636</identifier><identifier>EISBN: 9781424495634</identifier><identifier>EISBN: 9781424495610</identifier><identifier>EISBN: 142449561X</identifier><identifier>DOI: 10.1109/APS.2011.5997203</identifier><language>eng</language><publisher>IEEE</publisher><subject>2-D stencil decomposition ; Biological system modeling ; Computational modeling ; FFT ; Integral equations ; Memory management ; Nonhomogeneous media ; Scalability ; Testing</subject><ispartof>2011 IEEE International Symposium on Antennas and Propagation (APSURSI), 2011, p.3158-3161</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5997203$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5997203$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fangzhou Wei</creatorcontrib><creatorcontrib>Yilmaz, A. E.</creatorcontrib><title>A 2-D decomposition based parallelization of AIM for 3-D BIOEM problems</title><title>2011 IEEE International Symposium on Antennas and Propagation (APSURSI)</title><addtitle>APS</addtitle><description>A novel parallelization of the adaptive integral method (AIM) is presented for accelerating the large-scale solution of volume integral equations pertinent to bioelectromagnetics (BIOEM) problems. The proposed method improves the parallel scalability of AIM by (i) using different workload distribution strategies to load balance the different steps of the algorithm (rather than a single global decomposition strategy) and (ii) using a 2-D rather than a 1-D stencil decomposition of the auxiliary grid to parallelize the 3-D FFTs and the related anterpolation/interpolation steps. With the proposed modifications, the maximum number of processes that can be used effectively scales as P max ~ N 2/3 , where N denotes the number of volumetric unknowns. Numerical results demonstrate the scalability of the method and its application to BIOEM problems.</description><subject>2-D stencil decomposition</subject><subject>Biological system modeling</subject><subject>Computational modeling</subject><subject>FFT</subject><subject>Integral equations</subject><subject>Memory management</subject><subject>Nonhomogeneous media</subject><subject>Scalability</subject><subject>Testing</subject><issn>1522-3965</issn><issn>1947-1491</issn><isbn>9781424495627</isbn><isbn>1424495628</isbn><isbn>1424495636</isbn><isbn>9781424495634</isbn><isbn>9781424495610</isbn><isbn>142449561X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kE1Lw0AQhtcvsNbcBS_7BxJ39rNzjG2tgZYK9l42yQZWEjdke9Ff76J1Li88D_PCDCEPwAoAhk_l23vBGUChEA1n4oLcgeRSotJCX5IZoDQ5SIQrkqFZ_DturpNTnOcCtbolWYwfLE0SCy5mZFNSnq9o65owjCH6kw-ftLbRtXS0k-171_tv-0tDR8tqR7swUZFWnqv9ekfHKdS9G-I9uelsH112zjk5vKwPy9d8u99Uy3Kbe2SnXNVGNtJxI9AIDp1rJG-UMdokqLlmotagG8VUoq1qF0y1Il2hLYKoEcWcPP7VeufccZz8YKev4_kl4gcijkyD</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Fangzhou Wei</creator><creator>Yilmaz, A. E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201107</creationdate><title>A 2-D decomposition based parallelization of AIM for 3-D BIOEM problems</title><author>Fangzhou Wei ; Yilmaz, A. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-5b74c4e27397321fec42c577674e262603b616c505c57d5d805d39566a913b993</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>2-D stencil decomposition</topic><topic>Biological system modeling</topic><topic>Computational modeling</topic><topic>FFT</topic><topic>Integral equations</topic><topic>Memory management</topic><topic>Nonhomogeneous media</topic><topic>Scalability</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Fangzhou Wei</creatorcontrib><creatorcontrib>Yilmaz, A. E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fangzhou Wei</au><au>Yilmaz, A. E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A 2-D decomposition based parallelization of AIM for 3-D BIOEM problems</atitle><btitle>2011 IEEE International Symposium on Antennas and Propagation (APSURSI)</btitle><stitle>APS</stitle><date>2011-07</date><risdate>2011</risdate><spage>3158</spage><epage>3161</epage><pages>3158-3161</pages><issn>1522-3965</issn><eissn>1947-1491</eissn><isbn>9781424495627</isbn><isbn>1424495628</isbn><eisbn>1424495636</eisbn><eisbn>9781424495634</eisbn><eisbn>9781424495610</eisbn><eisbn>142449561X</eisbn><abstract>A novel parallelization of the adaptive integral method (AIM) is presented for accelerating the large-scale solution of volume integral equations pertinent to bioelectromagnetics (BIOEM) problems. The proposed method improves the parallel scalability of AIM by (i) using different workload distribution strategies to load balance the different steps of the algorithm (rather than a single global decomposition strategy) and (ii) using a 2-D rather than a 1-D stencil decomposition of the auxiliary grid to parallelize the 3-D FFTs and the related anterpolation/interpolation steps. With the proposed modifications, the maximum number of processes that can be used effectively scales as P max ~ N 2/3 , where N denotes the number of volumetric unknowns. Numerical results demonstrate the scalability of the method and its application to BIOEM problems.</abstract><pub>IEEE</pub><doi>10.1109/APS.2011.5997203</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1522-3965
ispartof 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), 2011, p.3158-3161
issn 1522-3965
1947-1491
language eng
recordid cdi_ieee_primary_5997203
source IEEE Electronic Library (IEL) Conference Proceedings
subjects 2-D stencil decomposition
Biological system modeling
Computational modeling
FFT
Integral equations
Memory management
Nonhomogeneous media
Scalability
Testing
title A 2-D decomposition based parallelization of AIM for 3-D BIOEM problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A04%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%202-D%20decomposition%20based%20parallelization%20of%20AIM%20for%203-D%20BIOEM%20problems&rft.btitle=2011%20IEEE%20International%20Symposium%20on%20Antennas%20and%20Propagation%20(APSURSI)&rft.au=Fangzhou%20Wei&rft.date=2011-07&rft.spage=3158&rft.epage=3161&rft.pages=3158-3161&rft.issn=1522-3965&rft.eissn=1947-1491&rft.isbn=9781424495627&rft.isbn_list=1424495628&rft_id=info:doi/10.1109/APS.2011.5997203&rft_dat=%3Cieee_6IE%3E5997203%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424495636&rft.eisbn_list=9781424495634&rft.eisbn_list=9781424495610&rft.eisbn_list=142449561X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5997203&rfr_iscdi=true