A 2-D decomposition based parallelization of AIM for 3-D BIOEM problems
A novel parallelization of the adaptive integral method (AIM) is presented for accelerating the large-scale solution of volume integral equations pertinent to bioelectromagnetics (BIOEM) problems. The proposed method improves the parallel scalability of AIM by (i) using different workload distributi...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3161 |
---|---|
container_issue | |
container_start_page | 3158 |
container_title | |
container_volume | |
creator | Fangzhou Wei Yilmaz, A. E. |
description | A novel parallelization of the adaptive integral method (AIM) is presented for accelerating the large-scale solution of volume integral equations pertinent to bioelectromagnetics (BIOEM) problems. The proposed method improves the parallel scalability of AIM by (i) using different workload distribution strategies to load balance the different steps of the algorithm (rather than a single global decomposition strategy) and (ii) using a 2-D rather than a 1-D stencil decomposition of the auxiliary grid to parallelize the 3-D FFTs and the related anterpolation/interpolation steps. With the proposed modifications, the maximum number of processes that can be used effectively scales as P max ~ N 2/3 , where N denotes the number of volumetric unknowns. Numerical results demonstrate the scalability of the method and its application to BIOEM problems. |
doi_str_mv | 10.1109/APS.2011.5997203 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5997203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5997203</ieee_id><sourcerecordid>5997203</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-5b74c4e27397321fec42c577674e262603b616c505c57d5d805d39566a913b993</originalsourceid><addsrcrecordid>eNo1kE1Lw0AQhtcvsNbcBS_7BxJ39rNzjG2tgZYK9l42yQZWEjdke9Ff76J1Li88D_PCDCEPwAoAhk_l23vBGUChEA1n4oLcgeRSotJCX5IZoDQ5SIQrkqFZ_DturpNTnOcCtbolWYwfLE0SCy5mZFNSnq9o65owjCH6kw-ftLbRtXS0k-171_tv-0tDR8tqR7swUZFWnqv9ekfHKdS9G-I9uelsH112zjk5vKwPy9d8u99Uy3Kbe2SnXNVGNtJxI9AIDp1rJG-UMdokqLlmotagG8VUoq1qF0y1Il2hLYKoEcWcPP7VeufccZz8YKev4_kl4gcijkyD</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A 2-D decomposition based parallelization of AIM for 3-D BIOEM problems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Fangzhou Wei ; Yilmaz, A. E.</creator><creatorcontrib>Fangzhou Wei ; Yilmaz, A. E.</creatorcontrib><description>A novel parallelization of the adaptive integral method (AIM) is presented for accelerating the large-scale solution of volume integral equations pertinent to bioelectromagnetics (BIOEM) problems. The proposed method improves the parallel scalability of AIM by (i) using different workload distribution strategies to load balance the different steps of the algorithm (rather than a single global decomposition strategy) and (ii) using a 2-D rather than a 1-D stencil decomposition of the auxiliary grid to parallelize the 3-D FFTs and the related anterpolation/interpolation steps. With the proposed modifications, the maximum number of processes that can be used effectively scales as P max ~ N 2/3 , where N denotes the number of volumetric unknowns. Numerical results demonstrate the scalability of the method and its application to BIOEM problems.</description><identifier>ISSN: 1522-3965</identifier><identifier>ISBN: 9781424495627</identifier><identifier>ISBN: 1424495628</identifier><identifier>EISSN: 1947-1491</identifier><identifier>EISBN: 1424495636</identifier><identifier>EISBN: 9781424495634</identifier><identifier>EISBN: 9781424495610</identifier><identifier>EISBN: 142449561X</identifier><identifier>DOI: 10.1109/APS.2011.5997203</identifier><language>eng</language><publisher>IEEE</publisher><subject>2-D stencil decomposition ; Biological system modeling ; Computational modeling ; FFT ; Integral equations ; Memory management ; Nonhomogeneous media ; Scalability ; Testing</subject><ispartof>2011 IEEE International Symposium on Antennas and Propagation (APSURSI), 2011, p.3158-3161</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5997203$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5997203$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fangzhou Wei</creatorcontrib><creatorcontrib>Yilmaz, A. E.</creatorcontrib><title>A 2-D decomposition based parallelization of AIM for 3-D BIOEM problems</title><title>2011 IEEE International Symposium on Antennas and Propagation (APSURSI)</title><addtitle>APS</addtitle><description>A novel parallelization of the adaptive integral method (AIM) is presented for accelerating the large-scale solution of volume integral equations pertinent to bioelectromagnetics (BIOEM) problems. The proposed method improves the parallel scalability of AIM by (i) using different workload distribution strategies to load balance the different steps of the algorithm (rather than a single global decomposition strategy) and (ii) using a 2-D rather than a 1-D stencil decomposition of the auxiliary grid to parallelize the 3-D FFTs and the related anterpolation/interpolation steps. With the proposed modifications, the maximum number of processes that can be used effectively scales as P max ~ N 2/3 , where N denotes the number of volumetric unknowns. Numerical results demonstrate the scalability of the method and its application to BIOEM problems.</description><subject>2-D stencil decomposition</subject><subject>Biological system modeling</subject><subject>Computational modeling</subject><subject>FFT</subject><subject>Integral equations</subject><subject>Memory management</subject><subject>Nonhomogeneous media</subject><subject>Scalability</subject><subject>Testing</subject><issn>1522-3965</issn><issn>1947-1491</issn><isbn>9781424495627</isbn><isbn>1424495628</isbn><isbn>1424495636</isbn><isbn>9781424495634</isbn><isbn>9781424495610</isbn><isbn>142449561X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kE1Lw0AQhtcvsNbcBS_7BxJ39rNzjG2tgZYK9l42yQZWEjdke9Ff76J1Li88D_PCDCEPwAoAhk_l23vBGUChEA1n4oLcgeRSotJCX5IZoDQ5SIQrkqFZ_DturpNTnOcCtbolWYwfLE0SCy5mZFNSnq9o65owjCH6kw-ftLbRtXS0k-171_tv-0tDR8tqR7swUZFWnqv9ekfHKdS9G-I9uelsH112zjk5vKwPy9d8u99Uy3Kbe2SnXNVGNtJxI9AIDp1rJG-UMdokqLlmotagG8VUoq1qF0y1Il2hLYKoEcWcPP7VeufccZz8YKev4_kl4gcijkyD</recordid><startdate>201107</startdate><enddate>201107</enddate><creator>Fangzhou Wei</creator><creator>Yilmaz, A. E.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201107</creationdate><title>A 2-D decomposition based parallelization of AIM for 3-D BIOEM problems</title><author>Fangzhou Wei ; Yilmaz, A. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-5b74c4e27397321fec42c577674e262603b616c505c57d5d805d39566a913b993</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>2-D stencil decomposition</topic><topic>Biological system modeling</topic><topic>Computational modeling</topic><topic>FFT</topic><topic>Integral equations</topic><topic>Memory management</topic><topic>Nonhomogeneous media</topic><topic>Scalability</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Fangzhou Wei</creatorcontrib><creatorcontrib>Yilmaz, A. E.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fangzhou Wei</au><au>Yilmaz, A. E.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A 2-D decomposition based parallelization of AIM for 3-D BIOEM problems</atitle><btitle>2011 IEEE International Symposium on Antennas and Propagation (APSURSI)</btitle><stitle>APS</stitle><date>2011-07</date><risdate>2011</risdate><spage>3158</spage><epage>3161</epage><pages>3158-3161</pages><issn>1522-3965</issn><eissn>1947-1491</eissn><isbn>9781424495627</isbn><isbn>1424495628</isbn><eisbn>1424495636</eisbn><eisbn>9781424495634</eisbn><eisbn>9781424495610</eisbn><eisbn>142449561X</eisbn><abstract>A novel parallelization of the adaptive integral method (AIM) is presented for accelerating the large-scale solution of volume integral equations pertinent to bioelectromagnetics (BIOEM) problems. The proposed method improves the parallel scalability of AIM by (i) using different workload distribution strategies to load balance the different steps of the algorithm (rather than a single global decomposition strategy) and (ii) using a 2-D rather than a 1-D stencil decomposition of the auxiliary grid to parallelize the 3-D FFTs and the related anterpolation/interpolation steps. With the proposed modifications, the maximum number of processes that can be used effectively scales as P max ~ N 2/3 , where N denotes the number of volumetric unknowns. Numerical results demonstrate the scalability of the method and its application to BIOEM problems.</abstract><pub>IEEE</pub><doi>10.1109/APS.2011.5997203</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1522-3965 |
ispartof | 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), 2011, p.3158-3161 |
issn | 1522-3965 1947-1491 |
language | eng |
recordid | cdi_ieee_primary_5997203 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | 2-D stencil decomposition Biological system modeling Computational modeling FFT Integral equations Memory management Nonhomogeneous media Scalability Testing |
title | A 2-D decomposition based parallelization of AIM for 3-D BIOEM problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A04%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%202-D%20decomposition%20based%20parallelization%20of%20AIM%20for%203-D%20BIOEM%20problems&rft.btitle=2011%20IEEE%20International%20Symposium%20on%20Antennas%20and%20Propagation%20(APSURSI)&rft.au=Fangzhou%20Wei&rft.date=2011-07&rft.spage=3158&rft.epage=3161&rft.pages=3158-3161&rft.issn=1522-3965&rft.eissn=1947-1491&rft.isbn=9781424495627&rft.isbn_list=1424495628&rft_id=info:doi/10.1109/APS.2011.5997203&rft_dat=%3Cieee_6IE%3E5997203%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424495636&rft.eisbn_list=9781424495634&rft.eisbn_list=9781424495610&rft.eisbn_list=142449561X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5997203&rfr_iscdi=true |