An automatic noun compound extraction from Arabic corpus
The identification of noun compound as multi-word lexical units is very important task in natural language processing applications that require some degree of semantic interpretation such as, machine translation, information retrieval and text summarization. In this paper, we used the hybrid method...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 230 |
---|---|
container_issue | |
container_start_page | 224 |
container_title | |
container_volume | |
creator | Saif, A. M. Aziz, M. J. A. |
description | The identification of noun compound as multi-word lexical units is very important task in natural language processing applications that require some degree of semantic interpretation such as, machine translation, information retrieval and text summarization. In this paper, we used the hybrid method for extracting the noun compound from Arabic corpus that is based on linguistic knowledge and statistical measures. For the candidate identification, we have used some linguistic analysis tools such as lemmatization and POS in order to filter the candidates and determine the variations. The association measures have been computed for each candidate to rank the candidates. After that, we have evaluated the association measures by using the n-best evaluation method. We reported the precision values for each association measure in each n-best list. The experimental results showed that the log-likelihood ratio is the best association measure that achieved highest precision. |
doi_str_mv | 10.1109/STAIR.2011.5995793 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5995793</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5995793</ieee_id><sourcerecordid>5995793</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-5e52d29a8145c6474e25bda54f4e16870ef676378c548ca0a405eaef979fb4243</originalsourceid><addsrcrecordid>eNpFj9tKxDAURSMqOI7zA_qSH2jN5eT2WAYvAwOC9n04TROo2KakLejfW3DA_bJYsNmwCbnnrOScucePujq8l4JxXirnlHHygtxyzYUFqSS7_BdwV2QjuNYF087ckN00fbI1ejVlN8RWA8VlTj3OnadDWgbqUz-ubGn4njP6uUsDjTn1tMrYrCWf8rhMd-Q64tcUdmduSf38VO9fi-Pby2FfHYvOsblQQYlWOLQclNdgIAjVtKggQuDaGhaiNloa6xVYjwyBqYAhOuNiAwLkljz8zXYhhNOYux7zz-l8Wv4Cl-5Ixg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An automatic noun compound extraction from Arabic corpus</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Saif, A. M. ; Aziz, M. J. A.</creator><creatorcontrib>Saif, A. M. ; Aziz, M. J. A.</creatorcontrib><description>The identification of noun compound as multi-word lexical units is very important task in natural language processing applications that require some degree of semantic interpretation such as, machine translation, information retrieval and text summarization. In this paper, we used the hybrid method for extracting the noun compound from Arabic corpus that is based on linguistic knowledge and statistical measures. For the candidate identification, we have used some linguistic analysis tools such as lemmatization and POS in order to filter the candidates and determine the variations. The association measures have been computed for each candidate to rank the candidates. After that, we have evaluated the association measures by using the n-best evaluation method. We reported the precision values for each association measure in each n-best list. The experimental results showed that the log-likelihood ratio is the best association measure that achieved highest precision.</description><identifier>ISSN: 2166-0697</identifier><identifier>ISBN: 1612843549</identifier><identifier>ISBN: 9781612843544</identifier><identifier>EISBN: 1612843530</identifier><identifier>EISBN: 9781612843537</identifier><identifier>DOI: 10.1109/STAIR.2011.5995793</identifier><language>eng</language><publisher>IEEE</publisher><subject>Arabic noun compund ; Association measures ; Compounds ; hybrid method ; lemmatization ; Magnetic heads ; morphological variations ; Mutual information ; n-best evaluation method ; Pragmatics ; Semantics ; Syntactics ; Tagging</subject><ispartof>2011 International Conference on Semantic Technology and Information Retrieval, 2011, p.224-230</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5995793$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5995793$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Saif, A. M.</creatorcontrib><creatorcontrib>Aziz, M. J. A.</creatorcontrib><title>An automatic noun compound extraction from Arabic corpus</title><title>2011 International Conference on Semantic Technology and Information Retrieval</title><addtitle>STAIR</addtitle><description>The identification of noun compound as multi-word lexical units is very important task in natural language processing applications that require some degree of semantic interpretation such as, machine translation, information retrieval and text summarization. In this paper, we used the hybrid method for extracting the noun compound from Arabic corpus that is based on linguistic knowledge and statistical measures. For the candidate identification, we have used some linguistic analysis tools such as lemmatization and POS in order to filter the candidates and determine the variations. The association measures have been computed for each candidate to rank the candidates. After that, we have evaluated the association measures by using the n-best evaluation method. We reported the precision values for each association measure in each n-best list. The experimental results showed that the log-likelihood ratio is the best association measure that achieved highest precision.</description><subject>Arabic noun compund</subject><subject>Association measures</subject><subject>Compounds</subject><subject>hybrid method</subject><subject>lemmatization</subject><subject>Magnetic heads</subject><subject>morphological variations</subject><subject>Mutual information</subject><subject>n-best evaluation method</subject><subject>Pragmatics</subject><subject>Semantics</subject><subject>Syntactics</subject><subject>Tagging</subject><issn>2166-0697</issn><isbn>1612843549</isbn><isbn>9781612843544</isbn><isbn>1612843530</isbn><isbn>9781612843537</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj9tKxDAURSMqOI7zA_qSH2jN5eT2WAYvAwOC9n04TROo2KakLejfW3DA_bJYsNmwCbnnrOScucePujq8l4JxXirnlHHygtxyzYUFqSS7_BdwV2QjuNYF087ckN00fbI1ejVlN8RWA8VlTj3OnadDWgbqUz-ubGn4njP6uUsDjTn1tMrYrCWf8rhMd-Q64tcUdmduSf38VO9fi-Pby2FfHYvOsblQQYlWOLQclNdgIAjVtKggQuDaGhaiNloa6xVYjwyBqYAhOuNiAwLkljz8zXYhhNOYux7zz-l8Wv4Cl-5Ixg</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Saif, A. M.</creator><creator>Aziz, M. J. A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201106</creationdate><title>An automatic noun compound extraction from Arabic corpus</title><author>Saif, A. M. ; Aziz, M. J. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-5e52d29a8145c6474e25bda54f4e16870ef676378c548ca0a405eaef979fb4243</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Arabic noun compund</topic><topic>Association measures</topic><topic>Compounds</topic><topic>hybrid method</topic><topic>lemmatization</topic><topic>Magnetic heads</topic><topic>morphological variations</topic><topic>Mutual information</topic><topic>n-best evaluation method</topic><topic>Pragmatics</topic><topic>Semantics</topic><topic>Syntactics</topic><topic>Tagging</topic><toplevel>online_resources</toplevel><creatorcontrib>Saif, A. M.</creatorcontrib><creatorcontrib>Aziz, M. J. A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Saif, A. M.</au><au>Aziz, M. J. A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An automatic noun compound extraction from Arabic corpus</atitle><btitle>2011 International Conference on Semantic Technology and Information Retrieval</btitle><stitle>STAIR</stitle><date>2011-06</date><risdate>2011</risdate><spage>224</spage><epage>230</epage><pages>224-230</pages><issn>2166-0697</issn><isbn>1612843549</isbn><isbn>9781612843544</isbn><eisbn>1612843530</eisbn><eisbn>9781612843537</eisbn><abstract>The identification of noun compound as multi-word lexical units is very important task in natural language processing applications that require some degree of semantic interpretation such as, machine translation, information retrieval and text summarization. In this paper, we used the hybrid method for extracting the noun compound from Arabic corpus that is based on linguistic knowledge and statistical measures. For the candidate identification, we have used some linguistic analysis tools such as lemmatization and POS in order to filter the candidates and determine the variations. The association measures have been computed for each candidate to rank the candidates. After that, we have evaluated the association measures by using the n-best evaluation method. We reported the precision values for each association measure in each n-best list. The experimental results showed that the log-likelihood ratio is the best association measure that achieved highest precision.</abstract><pub>IEEE</pub><doi>10.1109/STAIR.2011.5995793</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2166-0697 |
ispartof | 2011 International Conference on Semantic Technology and Information Retrieval, 2011, p.224-230 |
issn | 2166-0697 |
language | eng |
recordid | cdi_ieee_primary_5995793 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Arabic noun compund Association measures Compounds hybrid method lemmatization Magnetic heads morphological variations Mutual information n-best evaluation method Pragmatics Semantics Syntactics Tagging |
title | An automatic noun compound extraction from Arabic corpus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A59%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20automatic%20noun%20compound%20extraction%20from%20Arabic%20corpus&rft.btitle=2011%20International%20Conference%20on%20Semantic%20Technology%20and%20Information%20Retrieval&rft.au=Saif,%20A.%20M.&rft.date=2011-06&rft.spage=224&rft.epage=230&rft.pages=224-230&rft.issn=2166-0697&rft.isbn=1612843549&rft.isbn_list=9781612843544&rft_id=info:doi/10.1109/STAIR.2011.5995793&rft_dat=%3Cieee_6IE%3E5995793%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1612843530&rft.eisbn_list=9781612843537&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5995793&rfr_iscdi=true |