A segmentation-aware object detection model with occlusion handling

The bounding box representation employed by many popular object detection models [3, 6] implicitly assumes all pixels inside the box belong to the object. This assumption makes this representation less robust to the object with occlusion [16]. In this paper, we augment the bounding box with a set of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tianshi Gao, Packer, B., Koller, D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1368
container_issue
container_start_page 1361
container_title
container_volume
creator Tianshi Gao
Packer, B.
Koller, D.
description The bounding box representation employed by many popular object detection models [3, 6] implicitly assumes all pixels inside the box belong to the object. This assumption makes this representation less robust to the object with occlusion [16]. In this paper, we augment the bounding box with a set of binary variables each of which corresponds to a cell indicating whether the pixels in the cell belong to the object. This segmentation-aware representation explicitly models and accounts for the supporting pixels for the object within the bounding box thus more robust to occlusion. We learn the model in a structured output framework, and develop a method that efficiently performs both inference and learning using this rich representation. The method is able to use segmentation reasoning to achieve improved detection results with richer output (cell level segmentation) on the Street Scenes and Pascal VOC 2007 datasets. Finally, we present a globally coherent object model using our rich representation to account for object-object occlusion resulting in a more coherent image understanding.
doi_str_mv 10.1109/CVPR.2011.5995623
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5995623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5995623</ieee_id><sourcerecordid>5995623</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6c282642123c7a721685501cd4a9426d1b8edc157b3ed455fcb783a1b3ab6a393</originalsourceid><addsrcrecordid>eNpFkMlKA0EYhFtUMMY8gHjpF5ix_16nj2Fwg4Ai6jX08ifpMIvMtATf3hED1qWo71BQRcg1sBKA2dv64-W15AygVNYqzcUJuQSpjGHCCnv6H6Q5IzNgWhTagr0gi3Hcs0laV1aZGamXdMRti112OfVd4Q5uQNr7PYZMI-bJJkzbPmJDDynvaB9C8zX-wp3rYpO67RU537hmxMXR5-T9_u6tfixWzw9P9XJVJDAqFzrwimvJgYtgnOGgK6UYhCidlVxH8BXGAMp4gVEqtQneVMKBF85rN-2ak5u_3oSI688htW74Xh8PED9cf0zN</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A segmentation-aware object detection model with occlusion handling</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tianshi Gao ; Packer, B. ; Koller, D.</creator><creatorcontrib>Tianshi Gao ; Packer, B. ; Koller, D.</creatorcontrib><description>The bounding box representation employed by many popular object detection models [3, 6] implicitly assumes all pixels inside the box belong to the object. This assumption makes this representation less robust to the object with occlusion [16]. In this paper, we augment the bounding box with a set of binary variables each of which corresponds to a cell indicating whether the pixels in the cell belong to the object. This segmentation-aware representation explicitly models and accounts for the supporting pixels for the object within the bounding box thus more robust to occlusion. We learn the model in a structured output framework, and develop a method that efficiently performs both inference and learning using this rich representation. The method is able to use segmentation reasoning to achieve improved detection results with richer output (cell level segmentation) on the Street Scenes and Pascal VOC 2007 datasets. Finally, we present a globally coherent object model using our rich representation to account for object-object occlusion resulting in a more coherent image understanding.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 1457703947</identifier><identifier>ISBN: 9781457703942</identifier><identifier>EISBN: 1457703939</identifier><identifier>EISBN: 1457703955</identifier><identifier>EISBN: 9781457703959</identifier><identifier>EISBN: 9781457703935</identifier><identifier>DOI: 10.1109/CVPR.2011.5995623</identifier><language>eng</language><publisher>IEEE</publisher><subject>Detectors ; Equations ; Image segmentation ; Inference algorithms ; Joints ; Mathematical model ; Object detection</subject><ispartof>CVPR 2011, 2011, p.1361-1368</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5995623$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5995623$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tianshi Gao</creatorcontrib><creatorcontrib>Packer, B.</creatorcontrib><creatorcontrib>Koller, D.</creatorcontrib><title>A segmentation-aware object detection model with occlusion handling</title><title>CVPR 2011</title><addtitle>CVPR</addtitle><description>The bounding box representation employed by many popular object detection models [3, 6] implicitly assumes all pixels inside the box belong to the object. This assumption makes this representation less robust to the object with occlusion [16]. In this paper, we augment the bounding box with a set of binary variables each of which corresponds to a cell indicating whether the pixels in the cell belong to the object. This segmentation-aware representation explicitly models and accounts for the supporting pixels for the object within the bounding box thus more robust to occlusion. We learn the model in a structured output framework, and develop a method that efficiently performs both inference and learning using this rich representation. The method is able to use segmentation reasoning to achieve improved detection results with richer output (cell level segmentation) on the Street Scenes and Pascal VOC 2007 datasets. Finally, we present a globally coherent object model using our rich representation to account for object-object occlusion resulting in a more coherent image understanding.</description><subject>Detectors</subject><subject>Equations</subject><subject>Image segmentation</subject><subject>Inference algorithms</subject><subject>Joints</subject><subject>Mathematical model</subject><subject>Object detection</subject><issn>1063-6919</issn><isbn>1457703947</isbn><isbn>9781457703942</isbn><isbn>1457703939</isbn><isbn>1457703955</isbn><isbn>9781457703959</isbn><isbn>9781457703935</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkMlKA0EYhFtUMMY8gHjpF5ix_16nj2Fwg4Ai6jX08ifpMIvMtATf3hED1qWo71BQRcg1sBKA2dv64-W15AygVNYqzcUJuQSpjGHCCnv6H6Q5IzNgWhTagr0gi3Hcs0laV1aZGamXdMRti112OfVd4Q5uQNr7PYZMI-bJJkzbPmJDDynvaB9C8zX-wp3rYpO67RU537hmxMXR5-T9_u6tfixWzw9P9XJVJDAqFzrwimvJgYtgnOGgK6UYhCidlVxH8BXGAMp4gVEqtQneVMKBF85rN-2ak5u_3oSI688htW74Xh8PED9cf0zN</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Tianshi Gao</creator><creator>Packer, B.</creator><creator>Koller, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201106</creationdate><title>A segmentation-aware object detection model with occlusion handling</title><author>Tianshi Gao ; Packer, B. ; Koller, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6c282642123c7a721685501cd4a9426d1b8edc157b3ed455fcb783a1b3ab6a393</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Detectors</topic><topic>Equations</topic><topic>Image segmentation</topic><topic>Inference algorithms</topic><topic>Joints</topic><topic>Mathematical model</topic><topic>Object detection</topic><toplevel>online_resources</toplevel><creatorcontrib>Tianshi Gao</creatorcontrib><creatorcontrib>Packer, B.</creatorcontrib><creatorcontrib>Koller, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tianshi Gao</au><au>Packer, B.</au><au>Koller, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A segmentation-aware object detection model with occlusion handling</atitle><btitle>CVPR 2011</btitle><stitle>CVPR</stitle><date>2011-06</date><risdate>2011</risdate><spage>1361</spage><epage>1368</epage><pages>1361-1368</pages><issn>1063-6919</issn><isbn>1457703947</isbn><isbn>9781457703942</isbn><eisbn>1457703939</eisbn><eisbn>1457703955</eisbn><eisbn>9781457703959</eisbn><eisbn>9781457703935</eisbn><abstract>The bounding box representation employed by many popular object detection models [3, 6] implicitly assumes all pixels inside the box belong to the object. This assumption makes this representation less robust to the object with occlusion [16]. In this paper, we augment the bounding box with a set of binary variables each of which corresponds to a cell indicating whether the pixels in the cell belong to the object. This segmentation-aware representation explicitly models and accounts for the supporting pixels for the object within the bounding box thus more robust to occlusion. We learn the model in a structured output framework, and develop a method that efficiently performs both inference and learning using this rich representation. The method is able to use segmentation reasoning to achieve improved detection results with richer output (cell level segmentation) on the Street Scenes and Pascal VOC 2007 datasets. Finally, we present a globally coherent object model using our rich representation to account for object-object occlusion resulting in a more coherent image understanding.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2011.5995623</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6919
ispartof CVPR 2011, 2011, p.1361-1368
issn 1063-6919
language eng
recordid cdi_ieee_primary_5995623
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Detectors
Equations
Image segmentation
Inference algorithms
Joints
Mathematical model
Object detection
title A segmentation-aware object detection model with occlusion handling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T16%3A25%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20segmentation-aware%20object%20detection%20model%20with%20occlusion%20handling&rft.btitle=CVPR%202011&rft.au=Tianshi%20Gao&rft.date=2011-06&rft.spage=1361&rft.epage=1368&rft.pages=1361-1368&rft.issn=1063-6919&rft.isbn=1457703947&rft.isbn_list=9781457703942&rft_id=info:doi/10.1109/CVPR.2011.5995623&rft_dat=%3Cieee_6IE%3E5995623%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457703939&rft.eisbn_list=1457703955&rft.eisbn_list=9781457703959&rft.eisbn_list=9781457703935&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5995623&rfr_iscdi=true