A segmentation-aware object detection model with occlusion handling
The bounding box representation employed by many popular object detection models [3, 6] implicitly assumes all pixels inside the box belong to the object. This assumption makes this representation less robust to the object with occlusion [16]. In this paper, we augment the bounding box with a set of...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1368 |
---|---|
container_issue | |
container_start_page | 1361 |
container_title | |
container_volume | |
creator | Tianshi Gao Packer, B. Koller, D. |
description | The bounding box representation employed by many popular object detection models [3, 6] implicitly assumes all pixels inside the box belong to the object. This assumption makes this representation less robust to the object with occlusion [16]. In this paper, we augment the bounding box with a set of binary variables each of which corresponds to a cell indicating whether the pixels in the cell belong to the object. This segmentation-aware representation explicitly models and accounts for the supporting pixels for the object within the bounding box thus more robust to occlusion. We learn the model in a structured output framework, and develop a method that efficiently performs both inference and learning using this rich representation. The method is able to use segmentation reasoning to achieve improved detection results with richer output (cell level segmentation) on the Street Scenes and Pascal VOC 2007 datasets. Finally, we present a globally coherent object model using our rich representation to account for object-object occlusion resulting in a more coherent image understanding. |
doi_str_mv | 10.1109/CVPR.2011.5995623 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5995623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5995623</ieee_id><sourcerecordid>5995623</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-6c282642123c7a721685501cd4a9426d1b8edc157b3ed455fcb783a1b3ab6a393</originalsourceid><addsrcrecordid>eNpFkMlKA0EYhFtUMMY8gHjpF5ix_16nj2Fwg4Ai6jX08ifpMIvMtATf3hED1qWo71BQRcg1sBKA2dv64-W15AygVNYqzcUJuQSpjGHCCnv6H6Q5IzNgWhTagr0gi3Hcs0laV1aZGamXdMRti112OfVd4Q5uQNr7PYZMI-bJJkzbPmJDDynvaB9C8zX-wp3rYpO67RU537hmxMXR5-T9_u6tfixWzw9P9XJVJDAqFzrwimvJgYtgnOGgK6UYhCidlVxH8BXGAMp4gVEqtQneVMKBF85rN-2ak5u_3oSI688htW74Xh8PED9cf0zN</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A segmentation-aware object detection model with occlusion handling</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Tianshi Gao ; Packer, B. ; Koller, D.</creator><creatorcontrib>Tianshi Gao ; Packer, B. ; Koller, D.</creatorcontrib><description>The bounding box representation employed by many popular object detection models [3, 6] implicitly assumes all pixels inside the box belong to the object. This assumption makes this representation less robust to the object with occlusion [16]. In this paper, we augment the bounding box with a set of binary variables each of which corresponds to a cell indicating whether the pixels in the cell belong to the object. This segmentation-aware representation explicitly models and accounts for the supporting pixels for the object within the bounding box thus more robust to occlusion. We learn the model in a structured output framework, and develop a method that efficiently performs both inference and learning using this rich representation. The method is able to use segmentation reasoning to achieve improved detection results with richer output (cell level segmentation) on the Street Scenes and Pascal VOC 2007 datasets. Finally, we present a globally coherent object model using our rich representation to account for object-object occlusion resulting in a more coherent image understanding.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 1457703947</identifier><identifier>ISBN: 9781457703942</identifier><identifier>EISBN: 1457703939</identifier><identifier>EISBN: 1457703955</identifier><identifier>EISBN: 9781457703959</identifier><identifier>EISBN: 9781457703935</identifier><identifier>DOI: 10.1109/CVPR.2011.5995623</identifier><language>eng</language><publisher>IEEE</publisher><subject>Detectors ; Equations ; Image segmentation ; Inference algorithms ; Joints ; Mathematical model ; Object detection</subject><ispartof>CVPR 2011, 2011, p.1361-1368</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5995623$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5995623$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tianshi Gao</creatorcontrib><creatorcontrib>Packer, B.</creatorcontrib><creatorcontrib>Koller, D.</creatorcontrib><title>A segmentation-aware object detection model with occlusion handling</title><title>CVPR 2011</title><addtitle>CVPR</addtitle><description>The bounding box representation employed by many popular object detection models [3, 6] implicitly assumes all pixels inside the box belong to the object. This assumption makes this representation less robust to the object with occlusion [16]. In this paper, we augment the bounding box with a set of binary variables each of which corresponds to a cell indicating whether the pixels in the cell belong to the object. This segmentation-aware representation explicitly models and accounts for the supporting pixels for the object within the bounding box thus more robust to occlusion. We learn the model in a structured output framework, and develop a method that efficiently performs both inference and learning using this rich representation. The method is able to use segmentation reasoning to achieve improved detection results with richer output (cell level segmentation) on the Street Scenes and Pascal VOC 2007 datasets. Finally, we present a globally coherent object model using our rich representation to account for object-object occlusion resulting in a more coherent image understanding.</description><subject>Detectors</subject><subject>Equations</subject><subject>Image segmentation</subject><subject>Inference algorithms</subject><subject>Joints</subject><subject>Mathematical model</subject><subject>Object detection</subject><issn>1063-6919</issn><isbn>1457703947</isbn><isbn>9781457703942</isbn><isbn>1457703939</isbn><isbn>1457703955</isbn><isbn>9781457703959</isbn><isbn>9781457703935</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkMlKA0EYhFtUMMY8gHjpF5ix_16nj2Fwg4Ai6jX08ifpMIvMtATf3hED1qWo71BQRcg1sBKA2dv64-W15AygVNYqzcUJuQSpjGHCCnv6H6Q5IzNgWhTagr0gi3Hcs0laV1aZGamXdMRti112OfVd4Q5uQNr7PYZMI-bJJkzbPmJDDynvaB9C8zX-wp3rYpO67RU537hmxMXR5-T9_u6tfixWzw9P9XJVJDAqFzrwimvJgYtgnOGgK6UYhCidlVxH8BXGAMp4gVEqtQneVMKBF85rN-2ak5u_3oSI688htW74Xh8PED9cf0zN</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Tianshi Gao</creator><creator>Packer, B.</creator><creator>Koller, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201106</creationdate><title>A segmentation-aware object detection model with occlusion handling</title><author>Tianshi Gao ; Packer, B. ; Koller, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-6c282642123c7a721685501cd4a9426d1b8edc157b3ed455fcb783a1b3ab6a393</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Detectors</topic><topic>Equations</topic><topic>Image segmentation</topic><topic>Inference algorithms</topic><topic>Joints</topic><topic>Mathematical model</topic><topic>Object detection</topic><toplevel>online_resources</toplevel><creatorcontrib>Tianshi Gao</creatorcontrib><creatorcontrib>Packer, B.</creatorcontrib><creatorcontrib>Koller, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tianshi Gao</au><au>Packer, B.</au><au>Koller, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A segmentation-aware object detection model with occlusion handling</atitle><btitle>CVPR 2011</btitle><stitle>CVPR</stitle><date>2011-06</date><risdate>2011</risdate><spage>1361</spage><epage>1368</epage><pages>1361-1368</pages><issn>1063-6919</issn><isbn>1457703947</isbn><isbn>9781457703942</isbn><eisbn>1457703939</eisbn><eisbn>1457703955</eisbn><eisbn>9781457703959</eisbn><eisbn>9781457703935</eisbn><abstract>The bounding box representation employed by many popular object detection models [3, 6] implicitly assumes all pixels inside the box belong to the object. This assumption makes this representation less robust to the object with occlusion [16]. In this paper, we augment the bounding box with a set of binary variables each of which corresponds to a cell indicating whether the pixels in the cell belong to the object. This segmentation-aware representation explicitly models and accounts for the supporting pixels for the object within the bounding box thus more robust to occlusion. We learn the model in a structured output framework, and develop a method that efficiently performs both inference and learning using this rich representation. The method is able to use segmentation reasoning to achieve improved detection results with richer output (cell level segmentation) on the Street Scenes and Pascal VOC 2007 datasets. Finally, we present a globally coherent object model using our rich representation to account for object-object occlusion resulting in a more coherent image understanding.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2011.5995623</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6919 |
ispartof | CVPR 2011, 2011, p.1361-1368 |
issn | 1063-6919 |
language | eng |
recordid | cdi_ieee_primary_5995623 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Detectors Equations Image segmentation Inference algorithms Joints Mathematical model Object detection |
title | A segmentation-aware object detection model with occlusion handling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T16%3A25%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20segmentation-aware%20object%20detection%20model%20with%20occlusion%20handling&rft.btitle=CVPR%202011&rft.au=Tianshi%20Gao&rft.date=2011-06&rft.spage=1361&rft.epage=1368&rft.pages=1361-1368&rft.issn=1063-6919&rft.isbn=1457703947&rft.isbn_list=9781457703942&rft_id=info:doi/10.1109/CVPR.2011.5995623&rft_dat=%3Cieee_6IE%3E5995623%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457703939&rft.eisbn_list=1457703955&rft.eisbn_list=9781457703959&rft.eisbn_list=9781457703935&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5995623&rfr_iscdi=true |