Vehicle tracking across nonoverlapping cameras using joint kinematic and appearance features

We describe a vehicle tracking algorithm using input from a network of nonoverlapping cameras. Our algorithm is based on a novel statistical formulation that uses joint kinematic and image appearance information to link local tracks of the same vehicles into global tracks with longer persistence. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Matei, B. C., Sawhney, H. S., Samarasekera, S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3472
container_issue
container_start_page 3465
container_title
container_volume
creator Matei, B. C.
Sawhney, H. S.
Samarasekera, S.
description We describe a vehicle tracking algorithm using input from a network of nonoverlapping cameras. Our algorithm is based on a novel statistical formulation that uses joint kinematic and image appearance information to link local tracks of the same vehicles into global tracks with longer persistence. The algorithm can handle significant spatial separation between the cameras and is robust to challenging tracking conditions such as high traffic density, or complex road infrastructure. In these cases, traditional tracking formulations based on MHT, or JPDA algorithms, may fail to produce track associations across cameras due to the weak predictive models employed. We make several new contributions in this paper. Firstly, we model kinematic constraints between any two local tracks using road networks and transit time distributions. The transit time distributions are calculated dynamically as convolutions of normalized transit time distributions that are learned and adapted separately for individual roads. Secondly, we present a complete statistical tracker formulation, which combines kinematic and appearance likelihoods within a multi-hypothesis framework. We have extensively evaluated the algorithm proposed using a network of ground-based cameras with narrow field of view. The tracking results obtained on a large ground-truthed dataset demonstrate the effectiveness of the algorithm proposed.
doi_str_mv 10.1109/CVPR.2011.5995575
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5995575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5995575</ieee_id><sourcerecordid>5995575</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-d2a0aac519c8cf8f561c8737a6cabf8f6cf8b05e2060722c7dc02c6e6bdb37fa3</originalsourceid><addsrcrecordid>eNpFkN1KxDAUhCMquK77AOJNXqA1aTZJcynFP1hQRPdKWE5PTzVr_0i6gm9vFxecm-EbhrkYxi6lSKUU7rpYP7-kmZAy1c5pbfURO5dLba1QTrnjf1jaEzaTwqjEOOnO2CLGrZhkTO60nbH3NX16bIiPAfDLdx8cMPQx8q7v-m8KDQzDPkVoKUDku7inbe-7kU91amH0yKGr-FQkCNAh8Zpg3AWKF-y0hibS4uBz9nZ3-1o8JKun-8fiZpV4afWYVBkIANTSYY51XmsjMbfKgkEoJzZTWApNmTDCZhnaCkWGhkxZlcrWoObs6m_XE9FmCL6F8LM5PKN-AaIWWEQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Vehicle tracking across nonoverlapping cameras using joint kinematic and appearance features</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Matei, B. C. ; Sawhney, H. S. ; Samarasekera, S.</creator><creatorcontrib>Matei, B. C. ; Sawhney, H. S. ; Samarasekera, S.</creatorcontrib><description>We describe a vehicle tracking algorithm using input from a network of nonoverlapping cameras. Our algorithm is based on a novel statistical formulation that uses joint kinematic and image appearance information to link local tracks of the same vehicles into global tracks with longer persistence. The algorithm can handle significant spatial separation between the cameras and is robust to challenging tracking conditions such as high traffic density, or complex road infrastructure. In these cases, traditional tracking formulations based on MHT, or JPDA algorithms, may fail to produce track associations across cameras due to the weak predictive models employed. We make several new contributions in this paper. Firstly, we model kinematic constraints between any two local tracks using road networks and transit time distributions. The transit time distributions are calculated dynamically as convolutions of normalized transit time distributions that are learned and adapted separately for individual roads. Secondly, we present a complete statistical tracker formulation, which combines kinematic and appearance likelihoods within a multi-hypothesis framework. We have extensively evaluated the algorithm proposed using a network of ground-based cameras with narrow field of view. The tracking results obtained on a large ground-truthed dataset demonstrate the effectiveness of the algorithm proposed.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 1457703947</identifier><identifier>ISBN: 9781457703942</identifier><identifier>EISBN: 1457703939</identifier><identifier>EISBN: 1457703955</identifier><identifier>EISBN: 9781457703959</identifier><identifier>EISBN: 9781457703935</identifier><identifier>DOI: 10.1109/CVPR.2011.5995575</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Kinematics ; Radar tracking ; Roads ; Signal processing algorithms ; Target tracking ; Vehicles</subject><ispartof>CVPR 2011, 2011, p.3465-3472</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5995575$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5995575$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Matei, B. C.</creatorcontrib><creatorcontrib>Sawhney, H. S.</creatorcontrib><creatorcontrib>Samarasekera, S.</creatorcontrib><title>Vehicle tracking across nonoverlapping cameras using joint kinematic and appearance features</title><title>CVPR 2011</title><addtitle>CVPR</addtitle><description>We describe a vehicle tracking algorithm using input from a network of nonoverlapping cameras. Our algorithm is based on a novel statistical formulation that uses joint kinematic and image appearance information to link local tracks of the same vehicles into global tracks with longer persistence. The algorithm can handle significant spatial separation between the cameras and is robust to challenging tracking conditions such as high traffic density, or complex road infrastructure. In these cases, traditional tracking formulations based on MHT, or JPDA algorithms, may fail to produce track associations across cameras due to the weak predictive models employed. We make several new contributions in this paper. Firstly, we model kinematic constraints between any two local tracks using road networks and transit time distributions. The transit time distributions are calculated dynamically as convolutions of normalized transit time distributions that are learned and adapted separately for individual roads. Secondly, we present a complete statistical tracker formulation, which combines kinematic and appearance likelihoods within a multi-hypothesis framework. We have extensively evaluated the algorithm proposed using a network of ground-based cameras with narrow field of view. The tracking results obtained on a large ground-truthed dataset demonstrate the effectiveness of the algorithm proposed.</description><subject>Cameras</subject><subject>Kinematics</subject><subject>Radar tracking</subject><subject>Roads</subject><subject>Signal processing algorithms</subject><subject>Target tracking</subject><subject>Vehicles</subject><issn>1063-6919</issn><isbn>1457703947</isbn><isbn>9781457703942</isbn><isbn>1457703939</isbn><isbn>1457703955</isbn><isbn>9781457703959</isbn><isbn>9781457703935</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkN1KxDAUhCMquK77AOJNXqA1aTZJcynFP1hQRPdKWE5PTzVr_0i6gm9vFxecm-EbhrkYxi6lSKUU7rpYP7-kmZAy1c5pbfURO5dLba1QTrnjf1jaEzaTwqjEOOnO2CLGrZhkTO60nbH3NX16bIiPAfDLdx8cMPQx8q7v-m8KDQzDPkVoKUDku7inbe-7kU91amH0yKGr-FQkCNAh8Zpg3AWKF-y0hibS4uBz9nZ3-1o8JKun-8fiZpV4afWYVBkIANTSYY51XmsjMbfKgkEoJzZTWApNmTDCZhnaCkWGhkxZlcrWoObs6m_XE9FmCL6F8LM5PKN-AaIWWEQ</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Matei, B. C.</creator><creator>Sawhney, H. S.</creator><creator>Samarasekera, S.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201106</creationdate><title>Vehicle tracking across nonoverlapping cameras using joint kinematic and appearance features</title><author>Matei, B. C. ; Sawhney, H. S. ; Samarasekera, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-d2a0aac519c8cf8f561c8737a6cabf8f6cf8b05e2060722c7dc02c6e6bdb37fa3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cameras</topic><topic>Kinematics</topic><topic>Radar tracking</topic><topic>Roads</topic><topic>Signal processing algorithms</topic><topic>Target tracking</topic><topic>Vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Matei, B. C.</creatorcontrib><creatorcontrib>Sawhney, H. S.</creatorcontrib><creatorcontrib>Samarasekera, S.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Matei, B. C.</au><au>Sawhney, H. S.</au><au>Samarasekera, S.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Vehicle tracking across nonoverlapping cameras using joint kinematic and appearance features</atitle><btitle>CVPR 2011</btitle><stitle>CVPR</stitle><date>2011-06</date><risdate>2011</risdate><spage>3465</spage><epage>3472</epage><pages>3465-3472</pages><issn>1063-6919</issn><isbn>1457703947</isbn><isbn>9781457703942</isbn><eisbn>1457703939</eisbn><eisbn>1457703955</eisbn><eisbn>9781457703959</eisbn><eisbn>9781457703935</eisbn><abstract>We describe a vehicle tracking algorithm using input from a network of nonoverlapping cameras. Our algorithm is based on a novel statistical formulation that uses joint kinematic and image appearance information to link local tracks of the same vehicles into global tracks with longer persistence. The algorithm can handle significant spatial separation between the cameras and is robust to challenging tracking conditions such as high traffic density, or complex road infrastructure. In these cases, traditional tracking formulations based on MHT, or JPDA algorithms, may fail to produce track associations across cameras due to the weak predictive models employed. We make several new contributions in this paper. Firstly, we model kinematic constraints between any two local tracks using road networks and transit time distributions. The transit time distributions are calculated dynamically as convolutions of normalized transit time distributions that are learned and adapted separately for individual roads. Secondly, we present a complete statistical tracker formulation, which combines kinematic and appearance likelihoods within a multi-hypothesis framework. We have extensively evaluated the algorithm proposed using a network of ground-based cameras with narrow field of view. The tracking results obtained on a large ground-truthed dataset demonstrate the effectiveness of the algorithm proposed.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2011.5995575</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6919
ispartof CVPR 2011, 2011, p.3465-3472
issn 1063-6919
language eng
recordid cdi_ieee_primary_5995575
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cameras
Kinematics
Radar tracking
Roads
Signal processing algorithms
Target tracking
Vehicles
title Vehicle tracking across nonoverlapping cameras using joint kinematic and appearance features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A31%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Vehicle%20tracking%20across%20nonoverlapping%20cameras%20using%20joint%20kinematic%20and%20appearance%20features&rft.btitle=CVPR%202011&rft.au=Matei,%20B.%20C.&rft.date=2011-06&rft.spage=3465&rft.epage=3472&rft.pages=3465-3472&rft.issn=1063-6919&rft.isbn=1457703947&rft.isbn_list=9781457703942&rft_id=info:doi/10.1109/CVPR.2011.5995575&rft_dat=%3Cieee_6IE%3E5995575%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457703939&rft.eisbn_list=1457703955&rft.eisbn_list=9781457703959&rft.eisbn_list=9781457703935&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5995575&rfr_iscdi=true