Graph embedding discriminant analysis on Grassmannian manifolds for improved image set matching
A convenient way of dealing with image sets is to represent them as points on Grassmannian manifolds. While several recent studies explored the applicability of discriminant analysis on such manifolds, the conventional formalism of discriminant analysis suffers from not considering the local structu...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2712 |
---|---|
container_issue | |
container_start_page | 2705 |
container_title | |
container_volume | |
creator | Harandi, M. T. Sanderson, C. Shirazi, S. Lovell, B. C. |
description | A convenient way of dealing with image sets is to represent them as points on Grassmannian manifolds. While several recent studies explored the applicability of discriminant analysis on such manifolds, the conventional formalism of discriminant analysis suffers from not considering the local structure of the data. We propose a discriminant analysis approach on Grassmannian manifolds, based on a graph-embedding framework. We show that by introducing within-class and between-class similarity graphs to characterise intra-class compactness and inter-class separability, the geometrical structure of data can be exploited. Experiments on several image datasets (PIE, BANCA, MoBo, ETH-80) show that the proposed algorithm obtains considerable improvements in discrimination accuracy, in comparison to three recent methods: Grassmann Discriminant Analysis (GDA), Kernel GDA, and the kernel version of Affine Hull Image Set Distance. We further propose a Grassmannian kernel, based on canonical correlation between subspaces, which can increase discrimination accuracy when used in combination with previous Grassmannian kernels. |
doi_str_mv | 10.1109/CVPR.2011.5995564 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5995564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5995564</ieee_id><sourcerecordid>5995564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-aa41ba1123c1d777286d0e1ec018aefb0225c57de9166c746b2573e4989dffd33</originalsourceid><addsrcrecordid>eNpFUFFLwzAYjKjgnPsB4kv-QGe-pEmaRxk6hYEi6mtJk69bpE1LU4T9ewMOvJe7g-PgjpBbYGsAZu43X2_va84A1tIYKVV5Rq6hlFozYYQ5_zelviALYEoUyoC5IquUvlmGUpWRekHq7WTHA8W-Qe9D3FMfkptCH6KNM7XRdscUEh0izcGUehtjsJFmDu3Q-UTbYaKhH6fhB30Wdo804ZwDszvkvhty2dou4erES_L59PixeS52r9uXzcOucELwubC2hMYCcOHAa615pTxDQMegstg2jHPppPZoQCmnS9VwqQWWpjK-bb0QS3L31xsQsR7zAjsd69M54hdL4lfr</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Graph embedding discriminant analysis on Grassmannian manifolds for improved image set matching</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Harandi, M. T. ; Sanderson, C. ; Shirazi, S. ; Lovell, B. C.</creator><creatorcontrib>Harandi, M. T. ; Sanderson, C. ; Shirazi, S. ; Lovell, B. C.</creatorcontrib><description>A convenient way of dealing with image sets is to represent them as points on Grassmannian manifolds. While several recent studies explored the applicability of discriminant analysis on such manifolds, the conventional formalism of discriminant analysis suffers from not considering the local structure of the data. We propose a discriminant analysis approach on Grassmannian manifolds, based on a graph-embedding framework. We show that by introducing within-class and between-class similarity graphs to characterise intra-class compactness and inter-class separability, the geometrical structure of data can be exploited. Experiments on several image datasets (PIE, BANCA, MoBo, ETH-80) show that the proposed algorithm obtains considerable improvements in discrimination accuracy, in comparison to three recent methods: Grassmann Discriminant Analysis (GDA), Kernel GDA, and the kernel version of Affine Hull Image Set Distance. We further propose a Grassmannian kernel, based on canonical correlation between subspaces, which can increase discrimination accuracy when used in combination with previous Grassmannian kernels.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 1457703947</identifier><identifier>ISBN: 9781457703942</identifier><identifier>EISBN: 1457703939</identifier><identifier>EISBN: 1457703955</identifier><identifier>EISBN: 9781457703959</identifier><identifier>EISBN: 9781457703935</identifier><identifier>DOI: 10.1109/CVPR.2011.5995564</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Correlation ; Face ; Face recognition ; Kernel ; Manifolds ; Training data</subject><ispartof>CVPR 2011, 2011, p.2705-2712</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-aa41ba1123c1d777286d0e1ec018aefb0225c57de9166c746b2573e4989dffd33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5995564$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5995564$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Harandi, M. T.</creatorcontrib><creatorcontrib>Sanderson, C.</creatorcontrib><creatorcontrib>Shirazi, S.</creatorcontrib><creatorcontrib>Lovell, B. C.</creatorcontrib><title>Graph embedding discriminant analysis on Grassmannian manifolds for improved image set matching</title><title>CVPR 2011</title><addtitle>CVPR</addtitle><description>A convenient way of dealing with image sets is to represent them as points on Grassmannian manifolds. While several recent studies explored the applicability of discriminant analysis on such manifolds, the conventional formalism of discriminant analysis suffers from not considering the local structure of the data. We propose a discriminant analysis approach on Grassmannian manifolds, based on a graph-embedding framework. We show that by introducing within-class and between-class similarity graphs to characterise intra-class compactness and inter-class separability, the geometrical structure of data can be exploited. Experiments on several image datasets (PIE, BANCA, MoBo, ETH-80) show that the proposed algorithm obtains considerable improvements in discrimination accuracy, in comparison to three recent methods: Grassmann Discriminant Analysis (GDA), Kernel GDA, and the kernel version of Affine Hull Image Set Distance. We further propose a Grassmannian kernel, based on canonical correlation between subspaces, which can increase discrimination accuracy when used in combination with previous Grassmannian kernels.</description><subject>Accuracy</subject><subject>Correlation</subject><subject>Face</subject><subject>Face recognition</subject><subject>Kernel</subject><subject>Manifolds</subject><subject>Training data</subject><issn>1063-6919</issn><isbn>1457703947</isbn><isbn>9781457703942</isbn><isbn>1457703939</isbn><isbn>1457703955</isbn><isbn>9781457703959</isbn><isbn>9781457703935</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUFFLwzAYjKjgnPsB4kv-QGe-pEmaRxk6hYEi6mtJk69bpE1LU4T9ewMOvJe7g-PgjpBbYGsAZu43X2_va84A1tIYKVV5Rq6hlFozYYQ5_zelviALYEoUyoC5IquUvlmGUpWRekHq7WTHA8W-Qe9D3FMfkptCH6KNM7XRdscUEh0izcGUehtjsJFmDu3Q-UTbYaKhH6fhB30Wdo804ZwDszvkvhty2dou4erES_L59PixeS52r9uXzcOucELwubC2hMYCcOHAa615pTxDQMegstg2jHPppPZoQCmnS9VwqQWWpjK-bb0QS3L31xsQsR7zAjsd69M54hdL4lfr</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Harandi, M. T.</creator><creator>Sanderson, C.</creator><creator>Shirazi, S.</creator><creator>Lovell, B. C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201106</creationdate><title>Graph embedding discriminant analysis on Grassmannian manifolds for improved image set matching</title><author>Harandi, M. T. ; Sanderson, C. ; Shirazi, S. ; Lovell, B. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-aa41ba1123c1d777286d0e1ec018aefb0225c57de9166c746b2573e4989dffd33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accuracy</topic><topic>Correlation</topic><topic>Face</topic><topic>Face recognition</topic><topic>Kernel</topic><topic>Manifolds</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Harandi, M. T.</creatorcontrib><creatorcontrib>Sanderson, C.</creatorcontrib><creatorcontrib>Shirazi, S.</creatorcontrib><creatorcontrib>Lovell, B. C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Harandi, M. T.</au><au>Sanderson, C.</au><au>Shirazi, S.</au><au>Lovell, B. C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Graph embedding discriminant analysis on Grassmannian manifolds for improved image set matching</atitle><btitle>CVPR 2011</btitle><stitle>CVPR</stitle><date>2011-06</date><risdate>2011</risdate><spage>2705</spage><epage>2712</epage><pages>2705-2712</pages><issn>1063-6919</issn><isbn>1457703947</isbn><isbn>9781457703942</isbn><eisbn>1457703939</eisbn><eisbn>1457703955</eisbn><eisbn>9781457703959</eisbn><eisbn>9781457703935</eisbn><abstract>A convenient way of dealing with image sets is to represent them as points on Grassmannian manifolds. While several recent studies explored the applicability of discriminant analysis on such manifolds, the conventional formalism of discriminant analysis suffers from not considering the local structure of the data. We propose a discriminant analysis approach on Grassmannian manifolds, based on a graph-embedding framework. We show that by introducing within-class and between-class similarity graphs to characterise intra-class compactness and inter-class separability, the geometrical structure of data can be exploited. Experiments on several image datasets (PIE, BANCA, MoBo, ETH-80) show that the proposed algorithm obtains considerable improvements in discrimination accuracy, in comparison to three recent methods: Grassmann Discriminant Analysis (GDA), Kernel GDA, and the kernel version of Affine Hull Image Set Distance. We further propose a Grassmannian kernel, based on canonical correlation between subspaces, which can increase discrimination accuracy when used in combination with previous Grassmannian kernels.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2011.5995564</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6919 |
ispartof | CVPR 2011, 2011, p.2705-2712 |
issn | 1063-6919 |
language | eng |
recordid | cdi_ieee_primary_5995564 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy Correlation Face Face recognition Kernel Manifolds Training data |
title | Graph embedding discriminant analysis on Grassmannian manifolds for improved image set matching |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A28%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Graph%20embedding%20discriminant%20analysis%20on%20Grassmannian%20manifolds%20for%20improved%20image%20set%20matching&rft.btitle=CVPR%202011&rft.au=Harandi,%20M.%20T.&rft.date=2011-06&rft.spage=2705&rft.epage=2712&rft.pages=2705-2712&rft.issn=1063-6919&rft.isbn=1457703947&rft.isbn_list=9781457703942&rft_id=info:doi/10.1109/CVPR.2011.5995564&rft_dat=%3Cieee_6IE%3E5995564%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457703939&rft.eisbn_list=1457703955&rft.eisbn_list=9781457703959&rft.eisbn_list=9781457703935&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5995564&rfr_iscdi=true |