Graph embedding discriminant analysis on Grassmannian manifolds for improved image set matching

A convenient way of dealing with image sets is to represent them as points on Grassmannian manifolds. While several recent studies explored the applicability of discriminant analysis on such manifolds, the conventional formalism of discriminant analysis suffers from not considering the local structu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Harandi, M. T., Sanderson, C., Shirazi, S., Lovell, B. C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2712
container_issue
container_start_page 2705
container_title
container_volume
creator Harandi, M. T.
Sanderson, C.
Shirazi, S.
Lovell, B. C.
description A convenient way of dealing with image sets is to represent them as points on Grassmannian manifolds. While several recent studies explored the applicability of discriminant analysis on such manifolds, the conventional formalism of discriminant analysis suffers from not considering the local structure of the data. We propose a discriminant analysis approach on Grassmannian manifolds, based on a graph-embedding framework. We show that by introducing within-class and between-class similarity graphs to characterise intra-class compactness and inter-class separability, the geometrical structure of data can be exploited. Experiments on several image datasets (PIE, BANCA, MoBo, ETH-80) show that the proposed algorithm obtains considerable improvements in discrimination accuracy, in comparison to three recent methods: Grassmann Discriminant Analysis (GDA), Kernel GDA, and the kernel version of Affine Hull Image Set Distance. We further propose a Grassmannian kernel, based on canonical correlation between subspaces, which can increase discrimination accuracy when used in combination with previous Grassmannian kernels.
doi_str_mv 10.1109/CVPR.2011.5995564
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5995564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5995564</ieee_id><sourcerecordid>5995564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-aa41ba1123c1d777286d0e1ec018aefb0225c57de9166c746b2573e4989dffd33</originalsourceid><addsrcrecordid>eNpFUFFLwzAYjKjgnPsB4kv-QGe-pEmaRxk6hYEi6mtJk69bpE1LU4T9ewMOvJe7g-PgjpBbYGsAZu43X2_va84A1tIYKVV5Rq6hlFozYYQ5_zelviALYEoUyoC5IquUvlmGUpWRekHq7WTHA8W-Qe9D3FMfkptCH6KNM7XRdscUEh0izcGUehtjsJFmDu3Q-UTbYaKhH6fhB30Wdo804ZwDszvkvhty2dou4erES_L59PixeS52r9uXzcOucELwubC2hMYCcOHAa615pTxDQMegstg2jHPppPZoQCmnS9VwqQWWpjK-bb0QS3L31xsQsR7zAjsd69M54hdL4lfr</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Graph embedding discriminant analysis on Grassmannian manifolds for improved image set matching</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Harandi, M. T. ; Sanderson, C. ; Shirazi, S. ; Lovell, B. C.</creator><creatorcontrib>Harandi, M. T. ; Sanderson, C. ; Shirazi, S. ; Lovell, B. C.</creatorcontrib><description>A convenient way of dealing with image sets is to represent them as points on Grassmannian manifolds. While several recent studies explored the applicability of discriminant analysis on such manifolds, the conventional formalism of discriminant analysis suffers from not considering the local structure of the data. We propose a discriminant analysis approach on Grassmannian manifolds, based on a graph-embedding framework. We show that by introducing within-class and between-class similarity graphs to characterise intra-class compactness and inter-class separability, the geometrical structure of data can be exploited. Experiments on several image datasets (PIE, BANCA, MoBo, ETH-80) show that the proposed algorithm obtains considerable improvements in discrimination accuracy, in comparison to three recent methods: Grassmann Discriminant Analysis (GDA), Kernel GDA, and the kernel version of Affine Hull Image Set Distance. We further propose a Grassmannian kernel, based on canonical correlation between subspaces, which can increase discrimination accuracy when used in combination with previous Grassmannian kernels.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 1457703947</identifier><identifier>ISBN: 9781457703942</identifier><identifier>EISBN: 1457703939</identifier><identifier>EISBN: 1457703955</identifier><identifier>EISBN: 9781457703959</identifier><identifier>EISBN: 9781457703935</identifier><identifier>DOI: 10.1109/CVPR.2011.5995564</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; Correlation ; Face ; Face recognition ; Kernel ; Manifolds ; Training data</subject><ispartof>CVPR 2011, 2011, p.2705-2712</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-aa41ba1123c1d777286d0e1ec018aefb0225c57de9166c746b2573e4989dffd33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5995564$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5995564$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Harandi, M. T.</creatorcontrib><creatorcontrib>Sanderson, C.</creatorcontrib><creatorcontrib>Shirazi, S.</creatorcontrib><creatorcontrib>Lovell, B. C.</creatorcontrib><title>Graph embedding discriminant analysis on Grassmannian manifolds for improved image set matching</title><title>CVPR 2011</title><addtitle>CVPR</addtitle><description>A convenient way of dealing with image sets is to represent them as points on Grassmannian manifolds. While several recent studies explored the applicability of discriminant analysis on such manifolds, the conventional formalism of discriminant analysis suffers from not considering the local structure of the data. We propose a discriminant analysis approach on Grassmannian manifolds, based on a graph-embedding framework. We show that by introducing within-class and between-class similarity graphs to characterise intra-class compactness and inter-class separability, the geometrical structure of data can be exploited. Experiments on several image datasets (PIE, BANCA, MoBo, ETH-80) show that the proposed algorithm obtains considerable improvements in discrimination accuracy, in comparison to three recent methods: Grassmann Discriminant Analysis (GDA), Kernel GDA, and the kernel version of Affine Hull Image Set Distance. We further propose a Grassmannian kernel, based on canonical correlation between subspaces, which can increase discrimination accuracy when used in combination with previous Grassmannian kernels.</description><subject>Accuracy</subject><subject>Correlation</subject><subject>Face</subject><subject>Face recognition</subject><subject>Kernel</subject><subject>Manifolds</subject><subject>Training data</subject><issn>1063-6919</issn><isbn>1457703947</isbn><isbn>9781457703942</isbn><isbn>1457703939</isbn><isbn>1457703955</isbn><isbn>9781457703959</isbn><isbn>9781457703935</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUFFLwzAYjKjgnPsB4kv-QGe-pEmaRxk6hYEi6mtJk69bpE1LU4T9ewMOvJe7g-PgjpBbYGsAZu43X2_va84A1tIYKVV5Rq6hlFozYYQ5_zelviALYEoUyoC5IquUvlmGUpWRekHq7WTHA8W-Qe9D3FMfkptCH6KNM7XRdscUEh0izcGUehtjsJFmDu3Q-UTbYaKhH6fhB30Wdo804ZwDszvkvhty2dou4erES_L59PixeS52r9uXzcOucELwubC2hMYCcOHAa615pTxDQMegstg2jHPppPZoQCmnS9VwqQWWpjK-bb0QS3L31xsQsR7zAjsd69M54hdL4lfr</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Harandi, M. T.</creator><creator>Sanderson, C.</creator><creator>Shirazi, S.</creator><creator>Lovell, B. C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201106</creationdate><title>Graph embedding discriminant analysis on Grassmannian manifolds for improved image set matching</title><author>Harandi, M. T. ; Sanderson, C. ; Shirazi, S. ; Lovell, B. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-aa41ba1123c1d777286d0e1ec018aefb0225c57de9166c746b2573e4989dffd33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Accuracy</topic><topic>Correlation</topic><topic>Face</topic><topic>Face recognition</topic><topic>Kernel</topic><topic>Manifolds</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Harandi, M. T.</creatorcontrib><creatorcontrib>Sanderson, C.</creatorcontrib><creatorcontrib>Shirazi, S.</creatorcontrib><creatorcontrib>Lovell, B. C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Harandi, M. T.</au><au>Sanderson, C.</au><au>Shirazi, S.</au><au>Lovell, B. C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Graph embedding discriminant analysis on Grassmannian manifolds for improved image set matching</atitle><btitle>CVPR 2011</btitle><stitle>CVPR</stitle><date>2011-06</date><risdate>2011</risdate><spage>2705</spage><epage>2712</epage><pages>2705-2712</pages><issn>1063-6919</issn><isbn>1457703947</isbn><isbn>9781457703942</isbn><eisbn>1457703939</eisbn><eisbn>1457703955</eisbn><eisbn>9781457703959</eisbn><eisbn>9781457703935</eisbn><abstract>A convenient way of dealing with image sets is to represent them as points on Grassmannian manifolds. While several recent studies explored the applicability of discriminant analysis on such manifolds, the conventional formalism of discriminant analysis suffers from not considering the local structure of the data. We propose a discriminant analysis approach on Grassmannian manifolds, based on a graph-embedding framework. We show that by introducing within-class and between-class similarity graphs to characterise intra-class compactness and inter-class separability, the geometrical structure of data can be exploited. Experiments on several image datasets (PIE, BANCA, MoBo, ETH-80) show that the proposed algorithm obtains considerable improvements in discrimination accuracy, in comparison to three recent methods: Grassmann Discriminant Analysis (GDA), Kernel GDA, and the kernel version of Affine Hull Image Set Distance. We further propose a Grassmannian kernel, based on canonical correlation between subspaces, which can increase discrimination accuracy when used in combination with previous Grassmannian kernels.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2011.5995564</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6919
ispartof CVPR 2011, 2011, p.2705-2712
issn 1063-6919
language eng
recordid cdi_ieee_primary_5995564
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
Correlation
Face
Face recognition
Kernel
Manifolds
Training data
title Graph embedding discriminant analysis on Grassmannian manifolds for improved image set matching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A28%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Graph%20embedding%20discriminant%20analysis%20on%20Grassmannian%20manifolds%20for%20improved%20image%20set%20matching&rft.btitle=CVPR%202011&rft.au=Harandi,%20M.%20T.&rft.date=2011-06&rft.spage=2705&rft.epage=2712&rft.pages=2705-2712&rft.issn=1063-6919&rft.isbn=1457703947&rft.isbn_list=9781457703942&rft_id=info:doi/10.1109/CVPR.2011.5995564&rft_dat=%3Cieee_6IE%3E5995564%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457703939&rft.eisbn_list=1457703955&rft.eisbn_list=9781457703959&rft.eisbn_list=9781457703935&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5995564&rfr_iscdi=true