Blur kernel estimation using the radon transform

Camera shake is a common source of degradation in photographs. Restoring blurred pictures is challenging because both the blur kernel and the sharp image are unknown, which makes this problem severely underconstrained. In this work, we estimate camera shake by analyzing edges in the image, effective...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Taeg Sang Cho, Paris, S., Horn, B. K. P., Freeman, W. T.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 248
container_issue
container_start_page 241
container_title
container_volume
creator Taeg Sang Cho
Paris, S.
Horn, B. K. P.
Freeman, W. T.
description Camera shake is a common source of degradation in photographs. Restoring blurred pictures is challenging because both the blur kernel and the sharp image are unknown, which makes this problem severely underconstrained. In this work, we estimate camera shake by analyzing edges in the image, effectively constructing the Radon transform of the kernel. Building upon this result, we describe two algorithms for estimating spatially invariant blur kernels. In the first method, we directly invert the transform, which is computationally efficient since it is not necessary to also estimate the latent sharp image. This approach is well suited for scenes with a diversity of edges, such as man-made environments. In the second method, we incorporate the Radon transform within the MAP estimation framework to jointly estimate the kernel and the image. While more expensive, this algorithm performs well on a broader variety of scenes, even when fewer edges can be observed. Our experiments show that our algorithms achieve comparable results to the state of the art in general and produce superior outputs on man-made scenes and photos degraded by a small kernel.
doi_str_mv 10.1109/CVPR.2011.5995479
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5995479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5995479</ieee_id><sourcerecordid>5995479</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-e502872be8c190954de91107db93ee509c50bb51060e720d316a28c6d457d95d3</originalsourceid><addsrcrecordid>eNpFz89KxDAQBvCICq7rPoB4yQu0zjRN0jlq8R8sKKJel7aZ1Wi3K0n24NsbcMG5DB8fDL8R4hyhRAS6bN-enssKEEtNpGtLB-IUa20tKFJ0-B9qeyRmCEYVhpBOxCLGT8hjTEPazgRcj7sgvzhMPEqOyW-65LeT3EU_vcv0wTJ0LucUuimut2FzJo7X3Rh5sd9z8Xp789LeF8vHu4f2all4tDoVrKFqbNVzMyBBJjqmLLeuJ8W5pEFD3-ssA7YVOIWmq5rBuOx2pJ2ai4u_u56ZV98hw8LPav-t-gXkRkVh</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Blur kernel estimation using the radon transform</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Taeg Sang Cho ; Paris, S. ; Horn, B. K. P. ; Freeman, W. T.</creator><creatorcontrib>Taeg Sang Cho ; Paris, S. ; Horn, B. K. P. ; Freeman, W. T.</creatorcontrib><description>Camera shake is a common source of degradation in photographs. Restoring blurred pictures is challenging because both the blur kernel and the sharp image are unknown, which makes this problem severely underconstrained. In this work, we estimate camera shake by analyzing edges in the image, effectively constructing the Radon transform of the kernel. Building upon this result, we describe two algorithms for estimating spatially invariant blur kernels. In the first method, we directly invert the transform, which is computationally efficient since it is not necessary to also estimate the latent sharp image. This approach is well suited for scenes with a diversity of edges, such as man-made environments. In the second method, we incorporate the Radon transform within the MAP estimation framework to jointly estimate the kernel and the image. While more expensive, this algorithm performs well on a broader variety of scenes, even when fewer edges can be observed. Our experiments show that our algorithms achieve comparable results to the state of the art in general and produce superior outputs on man-made scenes and photos degraded by a small kernel.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 1457703947</identifier><identifier>ISBN: 9781457703942</identifier><identifier>EISBN: 1457703939</identifier><identifier>EISBN: 1457703955</identifier><identifier>EISBN: 9781457703959</identifier><identifier>EISBN: 9781457703935</identifier><identifier>DOI: 10.1109/CVPR.2011.5995479</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Estimation ; Image color analysis ; Image edge detection ; Kernel ; Noise ; Transforms</subject><ispartof>CVPR 2011, 2011, p.241-248</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5995479$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5995479$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Taeg Sang Cho</creatorcontrib><creatorcontrib>Paris, S.</creatorcontrib><creatorcontrib>Horn, B. K. P.</creatorcontrib><creatorcontrib>Freeman, W. T.</creatorcontrib><title>Blur kernel estimation using the radon transform</title><title>CVPR 2011</title><addtitle>CVPR</addtitle><description>Camera shake is a common source of degradation in photographs. Restoring blurred pictures is challenging because both the blur kernel and the sharp image are unknown, which makes this problem severely underconstrained. In this work, we estimate camera shake by analyzing edges in the image, effectively constructing the Radon transform of the kernel. Building upon this result, we describe two algorithms for estimating spatially invariant blur kernels. In the first method, we directly invert the transform, which is computationally efficient since it is not necessary to also estimate the latent sharp image. This approach is well suited for scenes with a diversity of edges, such as man-made environments. In the second method, we incorporate the Radon transform within the MAP estimation framework to jointly estimate the kernel and the image. While more expensive, this algorithm performs well on a broader variety of scenes, even when fewer edges can be observed. Our experiments show that our algorithms achieve comparable results to the state of the art in general and produce superior outputs on man-made scenes and photos degraded by a small kernel.</description><subject>Cameras</subject><subject>Estimation</subject><subject>Image color analysis</subject><subject>Image edge detection</subject><subject>Kernel</subject><subject>Noise</subject><subject>Transforms</subject><issn>1063-6919</issn><isbn>1457703947</isbn><isbn>9781457703942</isbn><isbn>1457703939</isbn><isbn>1457703955</isbn><isbn>9781457703959</isbn><isbn>9781457703935</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFz89KxDAQBvCICq7rPoB4yQu0zjRN0jlq8R8sKKJel7aZ1Wi3K0n24NsbcMG5DB8fDL8R4hyhRAS6bN-enssKEEtNpGtLB-IUa20tKFJ0-B9qeyRmCEYVhpBOxCLGT8hjTEPazgRcj7sgvzhMPEqOyW-65LeT3EU_vcv0wTJ0LucUuimut2FzJo7X3Rh5sd9z8Xp789LeF8vHu4f2all4tDoVrKFqbNVzMyBBJjqmLLeuJ8W5pEFD3-ssA7YVOIWmq5rBuOx2pJ2ai4u_u56ZV98hw8LPav-t-gXkRkVh</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Taeg Sang Cho</creator><creator>Paris, S.</creator><creator>Horn, B. K. P.</creator><creator>Freeman, W. T.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201106</creationdate><title>Blur kernel estimation using the radon transform</title><author>Taeg Sang Cho ; Paris, S. ; Horn, B. K. P. ; Freeman, W. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-e502872be8c190954de91107db93ee509c50bb51060e720d316a28c6d457d95d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cameras</topic><topic>Estimation</topic><topic>Image color analysis</topic><topic>Image edge detection</topic><topic>Kernel</topic><topic>Noise</topic><topic>Transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Taeg Sang Cho</creatorcontrib><creatorcontrib>Paris, S.</creatorcontrib><creatorcontrib>Horn, B. K. P.</creatorcontrib><creatorcontrib>Freeman, W. T.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Taeg Sang Cho</au><au>Paris, S.</au><au>Horn, B. K. P.</au><au>Freeman, W. T.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Blur kernel estimation using the radon transform</atitle><btitle>CVPR 2011</btitle><stitle>CVPR</stitle><date>2011-06</date><risdate>2011</risdate><spage>241</spage><epage>248</epage><pages>241-248</pages><issn>1063-6919</issn><isbn>1457703947</isbn><isbn>9781457703942</isbn><eisbn>1457703939</eisbn><eisbn>1457703955</eisbn><eisbn>9781457703959</eisbn><eisbn>9781457703935</eisbn><abstract>Camera shake is a common source of degradation in photographs. Restoring blurred pictures is challenging because both the blur kernel and the sharp image are unknown, which makes this problem severely underconstrained. In this work, we estimate camera shake by analyzing edges in the image, effectively constructing the Radon transform of the kernel. Building upon this result, we describe two algorithms for estimating spatially invariant blur kernels. In the first method, we directly invert the transform, which is computationally efficient since it is not necessary to also estimate the latent sharp image. This approach is well suited for scenes with a diversity of edges, such as man-made environments. In the second method, we incorporate the Radon transform within the MAP estimation framework to jointly estimate the kernel and the image. While more expensive, this algorithm performs well on a broader variety of scenes, even when fewer edges can be observed. Our experiments show that our algorithms achieve comparable results to the state of the art in general and produce superior outputs on man-made scenes and photos degraded by a small kernel.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2011.5995479</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6919
ispartof CVPR 2011, 2011, p.241-248
issn 1063-6919
language eng
recordid cdi_ieee_primary_5995479
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cameras
Estimation
Image color analysis
Image edge detection
Kernel
Noise
Transforms
title Blur kernel estimation using the radon transform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A35%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Blur%20kernel%20estimation%20using%20the%20radon%20transform&rft.btitle=CVPR%202011&rft.au=Taeg%20Sang%20Cho&rft.date=2011-06&rft.spage=241&rft.epage=248&rft.pages=241-248&rft.issn=1063-6919&rft.isbn=1457703947&rft.isbn_list=9781457703942&rft_id=info:doi/10.1109/CVPR.2011.5995479&rft_dat=%3Cieee_6IE%3E5995479%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1457703939&rft.eisbn_list=1457703955&rft.eisbn_list=9781457703959&rft.eisbn_list=9781457703935&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5995479&rfr_iscdi=true