Submodular decomposition framework for inference in associative Markov networks with global constraints

In this paper we address the problem of finding the most probable state of discrete Markov random field (MRF) with associative pairwise terms. Although of practical importance, this problem is known to be NP-hard in general. We propose a new type of MRF decomposition, submodular decomposition (SMD)....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Osokin, A., Vetrov, D., Kolmogorov, V.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we address the problem of finding the most probable state of discrete Markov random field (MRF) with associative pairwise terms. Although of practical importance, this problem is known to be NP-hard in general. We propose a new type of MRF decomposition, submodular decomposition (SMD). Unlike existing decomposition approaches SMD decomposes the initial problem into sub-problems corresponding to a specific class label while preserving the graph structure of each subproblem. Such decomposition enables us to take into account several types of global constraints in an efficient manner. We study theoretical properties of the proposed approach and demonstrate its applicability on a number of problems.
ISSN:1063-6919
DOI:10.1109/CVPR.2011.5995361