High-endurance and performance-efficient design of hybrid cache architectures through adaptive line replacement
In this paper, we propose a run-time strategy for managing writes onto last level cache in chip multiprocessors where STT-RAM memory is used as baseline technology. To this end, we assume that each cache set is decomposed into limited SRAM lines and large number of STT-RAM lines. SRAM lines are targ...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 84 |
---|---|
container_issue | |
container_start_page | 79 |
container_title | |
container_volume | |
creator | Jadidi, A. Arjomand, M. Sarbazi-Azad, H. |
description | In this paper, we propose a run-time strategy for managing writes onto last level cache in chip multiprocessors where STT-RAM memory is used as baseline technology. To this end, we assume that each cache set is decomposed into limited SRAM lines and large number of STT-RAM lines. SRAM lines are target of frequently-written data and rarely-written or read-only ones are pushed into STT-RAM. As a novel contribution, a low-overhead, fully-hardware technique is utilized to detect write-intensive data blocks of working set and place them into SRAM lines while the remaining data blocks are candidates to be remapped onto STT-RAM blocks during system operation. Therefore, the achieved cache architecture has large capacity and consumes near zero leakage energy using STT-RAM array; while dynamic write energy, acceptable write latency, and long lifetime is guaranteed via SRAM array. Results of full-system simulation for a quad-core CMP running PARSEC-2 benchmark suit confirm an average of 49 times improvement in cache lifetime and more than 50% reduction in cache power consumption when compared to baseline configurations. |
doi_str_mv | 10.1109/ISLPED.2011.5993611 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5993611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5993611</ieee_id><sourcerecordid>5993611</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-5573b2f01a3ed49a5a4c55d4b755e9a9e3eda6c1ec05eddeb5b0449e55f267153</originalsourceid><addsrcrecordid>eNpVkEFLw0AUhFdEUGp_QS_7B1L3JXmb7FFqtYWCgr2Xl923zUqahE0q9N8bsRfnMszAfIcRYgFqCaDM0_Zz97F-WaYKYInGZBrgRsxNUYKGtMw1GnX7L5fZvZgPw5eapLUxCh5EtwnHOuHWnSO1liW1TvYcfRdPvzlh74MN3I7S8RCOrey8rC9VDE5asvU0iLYOI9vxHHmQYx2787GW5KgfwzfLJrQsI_cNWT5NmEdx56kZeH71mdi_rverTbJ7f9uunndJMGpMEIusSr0CytjlhpByi-jyqkBkQ4anmrQFtgrZOa6wUnluGNGnugDMZmLxhw3MfOhjOFG8HK4vZT9u6V5H</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>High-endurance and performance-efficient design of hybrid cache architectures through adaptive line replacement</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jadidi, A. ; Arjomand, M. ; Sarbazi-Azad, H.</creator><creatorcontrib>Jadidi, A. ; Arjomand, M. ; Sarbazi-Azad, H.</creatorcontrib><description>In this paper, we propose a run-time strategy for managing writes onto last level cache in chip multiprocessors where STT-RAM memory is used as baseline technology. To this end, we assume that each cache set is decomposed into limited SRAM lines and large number of STT-RAM lines. SRAM lines are target of frequently-written data and rarely-written or read-only ones are pushed into STT-RAM. As a novel contribution, a low-overhead, fully-hardware technique is utilized to detect write-intensive data blocks of working set and place them into SRAM lines while the remaining data blocks are candidates to be remapped onto STT-RAM blocks during system operation. Therefore, the achieved cache architecture has large capacity and consumes near zero leakage energy using STT-RAM array; while dynamic write energy, acceptable write latency, and long lifetime is guaranteed via SRAM array. Results of full-system simulation for a quad-core CMP running PARSEC-2 benchmark suit confirm an average of 49 times improvement in cache lifetime and more than 50% reduction in cache power consumption when compared to baseline configurations.</description><identifier>ISBN: 9781612846583</identifier><identifier>ISBN: 1612846580</identifier><identifier>EISBN: 9781612846590</identifier><identifier>EISBN: 9781612846606</identifier><identifier>EISBN: 1612846602</identifier><identifier>EISBN: 1612846599</identifier><identifier>DOI: 10.1109/ISLPED.2011.5993611</identifier><language>eng</language><publisher>IEEE</publisher><subject>cache line displacement ; chip multiprocessors ; Computer architecture ; hybrid cache architecture ; Indexes ; Integrated circuit modeling ; Magnetic tunneling ; Microprocessors ; Radiation detectors ; Random access memory ; spin torque transfer RAM ; wear leveling</subject><ispartof>IEEE/ACM International Symposium on Low Power Electronics and Design, 2011, p.79-84</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5993611$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5993611$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jadidi, A.</creatorcontrib><creatorcontrib>Arjomand, M.</creatorcontrib><creatorcontrib>Sarbazi-Azad, H.</creatorcontrib><title>High-endurance and performance-efficient design of hybrid cache architectures through adaptive line replacement</title><title>IEEE/ACM International Symposium on Low Power Electronics and Design</title><addtitle>ISLPED</addtitle><description>In this paper, we propose a run-time strategy for managing writes onto last level cache in chip multiprocessors where STT-RAM memory is used as baseline technology. To this end, we assume that each cache set is decomposed into limited SRAM lines and large number of STT-RAM lines. SRAM lines are target of frequently-written data and rarely-written or read-only ones are pushed into STT-RAM. As a novel contribution, a low-overhead, fully-hardware technique is utilized to detect write-intensive data blocks of working set and place them into SRAM lines while the remaining data blocks are candidates to be remapped onto STT-RAM blocks during system operation. Therefore, the achieved cache architecture has large capacity and consumes near zero leakage energy using STT-RAM array; while dynamic write energy, acceptable write latency, and long lifetime is guaranteed via SRAM array. Results of full-system simulation for a quad-core CMP running PARSEC-2 benchmark suit confirm an average of 49 times improvement in cache lifetime and more than 50% reduction in cache power consumption when compared to baseline configurations.</description><subject>cache line displacement</subject><subject>chip multiprocessors</subject><subject>Computer architecture</subject><subject>hybrid cache architecture</subject><subject>Indexes</subject><subject>Integrated circuit modeling</subject><subject>Magnetic tunneling</subject><subject>Microprocessors</subject><subject>Radiation detectors</subject><subject>Random access memory</subject><subject>spin torque transfer RAM</subject><subject>wear leveling</subject><isbn>9781612846583</isbn><isbn>1612846580</isbn><isbn>9781612846590</isbn><isbn>9781612846606</isbn><isbn>1612846602</isbn><isbn>1612846599</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkEFLw0AUhFdEUGp_QS_7B1L3JXmb7FFqtYWCgr2Xl923zUqahE0q9N8bsRfnMszAfIcRYgFqCaDM0_Zz97F-WaYKYInGZBrgRsxNUYKGtMw1GnX7L5fZvZgPw5eapLUxCh5EtwnHOuHWnSO1liW1TvYcfRdPvzlh74MN3I7S8RCOrey8rC9VDE5asvU0iLYOI9vxHHmQYx2787GW5KgfwzfLJrQsI_cNWT5NmEdx56kZeH71mdi_rverTbJ7f9uunndJMGpMEIusSr0CytjlhpByi-jyqkBkQ4anmrQFtgrZOa6wUnluGNGnugDMZmLxhw3MfOhjOFG8HK4vZT9u6V5H</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>Jadidi, A.</creator><creator>Arjomand, M.</creator><creator>Sarbazi-Azad, H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201108</creationdate><title>High-endurance and performance-efficient design of hybrid cache architectures through adaptive line replacement</title><author>Jadidi, A. ; Arjomand, M. ; Sarbazi-Azad, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-5573b2f01a3ed49a5a4c55d4b755e9a9e3eda6c1ec05eddeb5b0449e55f267153</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>cache line displacement</topic><topic>chip multiprocessors</topic><topic>Computer architecture</topic><topic>hybrid cache architecture</topic><topic>Indexes</topic><topic>Integrated circuit modeling</topic><topic>Magnetic tunneling</topic><topic>Microprocessors</topic><topic>Radiation detectors</topic><topic>Random access memory</topic><topic>spin torque transfer RAM</topic><topic>wear leveling</topic><toplevel>online_resources</toplevel><creatorcontrib>Jadidi, A.</creatorcontrib><creatorcontrib>Arjomand, M.</creatorcontrib><creatorcontrib>Sarbazi-Azad, H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jadidi, A.</au><au>Arjomand, M.</au><au>Sarbazi-Azad, H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>High-endurance and performance-efficient design of hybrid cache architectures through adaptive line replacement</atitle><btitle>IEEE/ACM International Symposium on Low Power Electronics and Design</btitle><stitle>ISLPED</stitle><date>2011-08</date><risdate>2011</risdate><spage>79</spage><epage>84</epage><pages>79-84</pages><isbn>9781612846583</isbn><isbn>1612846580</isbn><eisbn>9781612846590</eisbn><eisbn>9781612846606</eisbn><eisbn>1612846602</eisbn><eisbn>1612846599</eisbn><abstract>In this paper, we propose a run-time strategy for managing writes onto last level cache in chip multiprocessors where STT-RAM memory is used as baseline technology. To this end, we assume that each cache set is decomposed into limited SRAM lines and large number of STT-RAM lines. SRAM lines are target of frequently-written data and rarely-written or read-only ones are pushed into STT-RAM. As a novel contribution, a low-overhead, fully-hardware technique is utilized to detect write-intensive data blocks of working set and place them into SRAM lines while the remaining data blocks are candidates to be remapped onto STT-RAM blocks during system operation. Therefore, the achieved cache architecture has large capacity and consumes near zero leakage energy using STT-RAM array; while dynamic write energy, acceptable write latency, and long lifetime is guaranteed via SRAM array. Results of full-system simulation for a quad-core CMP running PARSEC-2 benchmark suit confirm an average of 49 times improvement in cache lifetime and more than 50% reduction in cache power consumption when compared to baseline configurations.</abstract><pub>IEEE</pub><doi>10.1109/ISLPED.2011.5993611</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781612846583 |
ispartof | IEEE/ACM International Symposium on Low Power Electronics and Design, 2011, p.79-84 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5993611 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | cache line displacement chip multiprocessors Computer architecture hybrid cache architecture Indexes Integrated circuit modeling Magnetic tunneling Microprocessors Radiation detectors Random access memory spin torque transfer RAM wear leveling |
title | High-endurance and performance-efficient design of hybrid cache architectures through adaptive line replacement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A02%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=High-endurance%20and%20performance-efficient%20design%20of%20hybrid%20cache%20architectures%20through%20adaptive%20line%20replacement&rft.btitle=IEEE/ACM%20International%20Symposium%20on%20Low%20Power%20Electronics%20and%20Design&rft.au=Jadidi,%20A.&rft.date=2011-08&rft.spage=79&rft.epage=84&rft.pages=79-84&rft.isbn=9781612846583&rft.isbn_list=1612846580&rft_id=info:doi/10.1109/ISLPED.2011.5993611&rft_dat=%3Cieee_6IE%3E5993611%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781612846590&rft.eisbn_list=9781612846606&rft.eisbn_list=1612846602&rft.eisbn_list=1612846599&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5993611&rfr_iscdi=true |