High-endurance and performance-efficient design of hybrid cache architectures through adaptive line replacement

In this paper, we propose a run-time strategy for managing writes onto last level cache in chip multiprocessors where STT-RAM memory is used as baseline technology. To this end, we assume that each cache set is decomposed into limited SRAM lines and large number of STT-RAM lines. SRAM lines are targ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jadidi, A., Arjomand, M., Sarbazi-Azad, H.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 84
container_issue
container_start_page 79
container_title
container_volume
creator Jadidi, A.
Arjomand, M.
Sarbazi-Azad, H.
description In this paper, we propose a run-time strategy for managing writes onto last level cache in chip multiprocessors where STT-RAM memory is used as baseline technology. To this end, we assume that each cache set is decomposed into limited SRAM lines and large number of STT-RAM lines. SRAM lines are target of frequently-written data and rarely-written or read-only ones are pushed into STT-RAM. As a novel contribution, a low-overhead, fully-hardware technique is utilized to detect write-intensive data blocks of working set and place them into SRAM lines while the remaining data blocks are candidates to be remapped onto STT-RAM blocks during system operation. Therefore, the achieved cache architecture has large capacity and consumes near zero leakage energy using STT-RAM array; while dynamic write energy, acceptable write latency, and long lifetime is guaranteed via SRAM array. Results of full-system simulation for a quad-core CMP running PARSEC-2 benchmark suit confirm an average of 49 times improvement in cache lifetime and more than 50% reduction in cache power consumption when compared to baseline configurations.
doi_str_mv 10.1109/ISLPED.2011.5993611
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5993611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5993611</ieee_id><sourcerecordid>5993611</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-5573b2f01a3ed49a5a4c55d4b755e9a9e3eda6c1ec05eddeb5b0449e55f267153</originalsourceid><addsrcrecordid>eNpVkEFLw0AUhFdEUGp_QS_7B1L3JXmb7FFqtYWCgr2Xl923zUqahE0q9N8bsRfnMszAfIcRYgFqCaDM0_Zz97F-WaYKYInGZBrgRsxNUYKGtMw1GnX7L5fZvZgPw5eapLUxCh5EtwnHOuHWnSO1liW1TvYcfRdPvzlh74MN3I7S8RCOrey8rC9VDE5asvU0iLYOI9vxHHmQYx2787GW5KgfwzfLJrQsI_cNWT5NmEdx56kZeH71mdi_rverTbJ7f9uunndJMGpMEIusSr0CytjlhpByi-jyqkBkQ4anmrQFtgrZOa6wUnluGNGnugDMZmLxhw3MfOhjOFG8HK4vZT9u6V5H</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>High-endurance and performance-efficient design of hybrid cache architectures through adaptive line replacement</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jadidi, A. ; Arjomand, M. ; Sarbazi-Azad, H.</creator><creatorcontrib>Jadidi, A. ; Arjomand, M. ; Sarbazi-Azad, H.</creatorcontrib><description>In this paper, we propose a run-time strategy for managing writes onto last level cache in chip multiprocessors where STT-RAM memory is used as baseline technology. To this end, we assume that each cache set is decomposed into limited SRAM lines and large number of STT-RAM lines. SRAM lines are target of frequently-written data and rarely-written or read-only ones are pushed into STT-RAM. As a novel contribution, a low-overhead, fully-hardware technique is utilized to detect write-intensive data blocks of working set and place them into SRAM lines while the remaining data blocks are candidates to be remapped onto STT-RAM blocks during system operation. Therefore, the achieved cache architecture has large capacity and consumes near zero leakage energy using STT-RAM array; while dynamic write energy, acceptable write latency, and long lifetime is guaranteed via SRAM array. Results of full-system simulation for a quad-core CMP running PARSEC-2 benchmark suit confirm an average of 49 times improvement in cache lifetime and more than 50% reduction in cache power consumption when compared to baseline configurations.</description><identifier>ISBN: 9781612846583</identifier><identifier>ISBN: 1612846580</identifier><identifier>EISBN: 9781612846590</identifier><identifier>EISBN: 9781612846606</identifier><identifier>EISBN: 1612846602</identifier><identifier>EISBN: 1612846599</identifier><identifier>DOI: 10.1109/ISLPED.2011.5993611</identifier><language>eng</language><publisher>IEEE</publisher><subject>cache line displacement ; chip multiprocessors ; Computer architecture ; hybrid cache architecture ; Indexes ; Integrated circuit modeling ; Magnetic tunneling ; Microprocessors ; Radiation detectors ; Random access memory ; spin torque transfer RAM ; wear leveling</subject><ispartof>IEEE/ACM International Symposium on Low Power Electronics and Design, 2011, p.79-84</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5993611$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5993611$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jadidi, A.</creatorcontrib><creatorcontrib>Arjomand, M.</creatorcontrib><creatorcontrib>Sarbazi-Azad, H.</creatorcontrib><title>High-endurance and performance-efficient design of hybrid cache architectures through adaptive line replacement</title><title>IEEE/ACM International Symposium on Low Power Electronics and Design</title><addtitle>ISLPED</addtitle><description>In this paper, we propose a run-time strategy for managing writes onto last level cache in chip multiprocessors where STT-RAM memory is used as baseline technology. To this end, we assume that each cache set is decomposed into limited SRAM lines and large number of STT-RAM lines. SRAM lines are target of frequently-written data and rarely-written or read-only ones are pushed into STT-RAM. As a novel contribution, a low-overhead, fully-hardware technique is utilized to detect write-intensive data blocks of working set and place them into SRAM lines while the remaining data blocks are candidates to be remapped onto STT-RAM blocks during system operation. Therefore, the achieved cache architecture has large capacity and consumes near zero leakage energy using STT-RAM array; while dynamic write energy, acceptable write latency, and long lifetime is guaranteed via SRAM array. Results of full-system simulation for a quad-core CMP running PARSEC-2 benchmark suit confirm an average of 49 times improvement in cache lifetime and more than 50% reduction in cache power consumption when compared to baseline configurations.</description><subject>cache line displacement</subject><subject>chip multiprocessors</subject><subject>Computer architecture</subject><subject>hybrid cache architecture</subject><subject>Indexes</subject><subject>Integrated circuit modeling</subject><subject>Magnetic tunneling</subject><subject>Microprocessors</subject><subject>Radiation detectors</subject><subject>Random access memory</subject><subject>spin torque transfer RAM</subject><subject>wear leveling</subject><isbn>9781612846583</isbn><isbn>1612846580</isbn><isbn>9781612846590</isbn><isbn>9781612846606</isbn><isbn>1612846602</isbn><isbn>1612846599</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkEFLw0AUhFdEUGp_QS_7B1L3JXmb7FFqtYWCgr2Xl923zUqahE0q9N8bsRfnMszAfIcRYgFqCaDM0_Zz97F-WaYKYInGZBrgRsxNUYKGtMw1GnX7L5fZvZgPw5eapLUxCh5EtwnHOuHWnSO1liW1TvYcfRdPvzlh74MN3I7S8RCOrey8rC9VDE5asvU0iLYOI9vxHHmQYx2787GW5KgfwzfLJrQsI_cNWT5NmEdx56kZeH71mdi_rverTbJ7f9uunndJMGpMEIusSr0CytjlhpByi-jyqkBkQ4anmrQFtgrZOa6wUnluGNGnugDMZmLxhw3MfOhjOFG8HK4vZT9u6V5H</recordid><startdate>201108</startdate><enddate>201108</enddate><creator>Jadidi, A.</creator><creator>Arjomand, M.</creator><creator>Sarbazi-Azad, H.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201108</creationdate><title>High-endurance and performance-efficient design of hybrid cache architectures through adaptive line replacement</title><author>Jadidi, A. ; Arjomand, M. ; Sarbazi-Azad, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-5573b2f01a3ed49a5a4c55d4b755e9a9e3eda6c1ec05eddeb5b0449e55f267153</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>cache line displacement</topic><topic>chip multiprocessors</topic><topic>Computer architecture</topic><topic>hybrid cache architecture</topic><topic>Indexes</topic><topic>Integrated circuit modeling</topic><topic>Magnetic tunneling</topic><topic>Microprocessors</topic><topic>Radiation detectors</topic><topic>Random access memory</topic><topic>spin torque transfer RAM</topic><topic>wear leveling</topic><toplevel>online_resources</toplevel><creatorcontrib>Jadidi, A.</creatorcontrib><creatorcontrib>Arjomand, M.</creatorcontrib><creatorcontrib>Sarbazi-Azad, H.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jadidi, A.</au><au>Arjomand, M.</au><au>Sarbazi-Azad, H.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>High-endurance and performance-efficient design of hybrid cache architectures through adaptive line replacement</atitle><btitle>IEEE/ACM International Symposium on Low Power Electronics and Design</btitle><stitle>ISLPED</stitle><date>2011-08</date><risdate>2011</risdate><spage>79</spage><epage>84</epage><pages>79-84</pages><isbn>9781612846583</isbn><isbn>1612846580</isbn><eisbn>9781612846590</eisbn><eisbn>9781612846606</eisbn><eisbn>1612846602</eisbn><eisbn>1612846599</eisbn><abstract>In this paper, we propose a run-time strategy for managing writes onto last level cache in chip multiprocessors where STT-RAM memory is used as baseline technology. To this end, we assume that each cache set is decomposed into limited SRAM lines and large number of STT-RAM lines. SRAM lines are target of frequently-written data and rarely-written or read-only ones are pushed into STT-RAM. As a novel contribution, a low-overhead, fully-hardware technique is utilized to detect write-intensive data blocks of working set and place them into SRAM lines while the remaining data blocks are candidates to be remapped onto STT-RAM blocks during system operation. Therefore, the achieved cache architecture has large capacity and consumes near zero leakage energy using STT-RAM array; while dynamic write energy, acceptable write latency, and long lifetime is guaranteed via SRAM array. Results of full-system simulation for a quad-core CMP running PARSEC-2 benchmark suit confirm an average of 49 times improvement in cache lifetime and more than 50% reduction in cache power consumption when compared to baseline configurations.</abstract><pub>IEEE</pub><doi>10.1109/ISLPED.2011.5993611</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781612846583
ispartof IEEE/ACM International Symposium on Low Power Electronics and Design, 2011, p.79-84
issn
language eng
recordid cdi_ieee_primary_5993611
source IEEE Electronic Library (IEL) Conference Proceedings
subjects cache line displacement
chip multiprocessors
Computer architecture
hybrid cache architecture
Indexes
Integrated circuit modeling
Magnetic tunneling
Microprocessors
Radiation detectors
Random access memory
spin torque transfer RAM
wear leveling
title High-endurance and performance-efficient design of hybrid cache architectures through adaptive line replacement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A02%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=High-endurance%20and%20performance-efficient%20design%20of%20hybrid%20cache%20architectures%20through%20adaptive%20line%20replacement&rft.btitle=IEEE/ACM%20International%20Symposium%20on%20Low%20Power%20Electronics%20and%20Design&rft.au=Jadidi,%20A.&rft.date=2011-08&rft.spage=79&rft.epage=84&rft.pages=79-84&rft.isbn=9781612846583&rft.isbn_list=1612846580&rft_id=info:doi/10.1109/ISLPED.2011.5993611&rft_dat=%3Cieee_6IE%3E5993611%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781612846590&rft.eisbn_list=9781612846606&rft.eisbn_list=1612846602&rft.eisbn_list=1612846599&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5993611&rfr_iscdi=true