The Dynamic Structural Patterns of Social Networks Based on Triad Transitions

In modern social networks built from the data collected in various computer systems we observe constant changes corresponding to external events or the evolution of underlying organizations. In this work we present a new approach to the description and quantifying evolutionary patterns of social net...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Juszczyszyn, K., Budka, M., Musial, K.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 586
container_issue
container_start_page 581
container_title
container_volume
creator Juszczyszyn, K.
Budka, M.
Musial, K.
description In modern social networks built from the data collected in various computer systems we observe constant changes corresponding to external events or the evolution of underlying organizations. In this work we present a new approach to the description and quantifying evolutionary patterns of social networks illustrated with the data from the Enron email dataset. We propose the discovery of local network connection patterns (in this case: triads of nodes), measuring their transitions during network evolution and present the preliminary results of this approach. We define the Triad Transition Matrix (TTM) containing the probabilities of transitions between triads, then we show how it can help to discover the dynamic patterns of network evolution. Also, we analyse the roles performed by different triads in the network evolution by the creation of triad transition graph built from the TTM, which allows us to characterize the tendencies of structural changes in the investigated network. The future applications of our approach are also proposed and discussed.
doi_str_mv 10.1109/ASONAM.2011.50
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5992640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5992640</ieee_id><sourcerecordid>5992640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c260t-4bd5cfbc7457cbd56c0b1c4abb60cd1e402bb6d3770e8bddcaba0798b81dbf73</originalsourceid><addsrcrecordid>eNotjMtOwzAURI0QElCyZcPGP5Bwnfi5DIUCUh9Iyb7yK8KiTZDtCvXviQSbmXNmMQjdE6gIAfXYdrttu6lqIKRicIFuQXDFaCOYvESFEpJwUks6K1yjIqVggDDZ1FzyG7TpPz1-Po_6GCzucjzZfIr6gD90zj6OCU8D7iYb5mnr888UvxJ-0sk7PI24j0G7OfWYQg7TmO7Q1aAPyRf_vUD96qVfvpXr3ev7sl2XtuaQS2ocs4OxgjJhZ-YWDLFUG8PBOuIp1DO6Rgjw0jhntdEglDSSODOIZoEe_m6D937_HcNRx_OeKVVzCs0v7qNQDg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The Dynamic Structural Patterns of Social Networks Based on Triad Transitions</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Juszczyszyn, K. ; Budka, M. ; Musial, K.</creator><creatorcontrib>Juszczyszyn, K. ; Budka, M. ; Musial, K.</creatorcontrib><description>In modern social networks built from the data collected in various computer systems we observe constant changes corresponding to external events or the evolution of underlying organizations. In this work we present a new approach to the description and quantifying evolutionary patterns of social networks illustrated with the data from the Enron email dataset. We propose the discovery of local network connection patterns (in this case: triads of nodes), measuring their transitions during network evolution and present the preliminary results of this approach. We define the Triad Transition Matrix (TTM) containing the probabilities of transitions between triads, then we show how it can help to discover the dynamic patterns of network evolution. Also, we analyse the roles performed by different triads in the network evolution by the creation of triad transition graph built from the TTM, which allows us to characterize the tendencies of structural changes in the investigated network. The future applications of our approach are also proposed and discussed.</description><identifier>ISBN: 9781612847580</identifier><identifier>ISBN: 1612847587</identifier><identifier>EISBN: 0769543758</identifier><identifier>EISBN: 9780769543758</identifier><identifier>DOI: 10.1109/ASONAM.2011.50</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biology ; Complex networks ; Electronic mail ; Heuristic algorithms ; network evolution ; Social network ; Social network services ; Stability analysis ; Transmitters ; triad transitions</subject><ispartof>2011 International Conference on Advances in Social Networks Analysis and Mining, 2011, p.581-586</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c260t-4bd5cfbc7457cbd56c0b1c4abb60cd1e402bb6d3770e8bddcaba0798b81dbf73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5992640$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5992640$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Juszczyszyn, K.</creatorcontrib><creatorcontrib>Budka, M.</creatorcontrib><creatorcontrib>Musial, K.</creatorcontrib><title>The Dynamic Structural Patterns of Social Networks Based on Triad Transitions</title><title>2011 International Conference on Advances in Social Networks Analysis and Mining</title><addtitle>asonam</addtitle><description>In modern social networks built from the data collected in various computer systems we observe constant changes corresponding to external events or the evolution of underlying organizations. In this work we present a new approach to the description and quantifying evolutionary patterns of social networks illustrated with the data from the Enron email dataset. We propose the discovery of local network connection patterns (in this case: triads of nodes), measuring their transitions during network evolution and present the preliminary results of this approach. We define the Triad Transition Matrix (TTM) containing the probabilities of transitions between triads, then we show how it can help to discover the dynamic patterns of network evolution. Also, we analyse the roles performed by different triads in the network evolution by the creation of triad transition graph built from the TTM, which allows us to characterize the tendencies of structural changes in the investigated network. The future applications of our approach are also proposed and discussed.</description><subject>Biology</subject><subject>Complex networks</subject><subject>Electronic mail</subject><subject>Heuristic algorithms</subject><subject>network evolution</subject><subject>Social network</subject><subject>Social network services</subject><subject>Stability analysis</subject><subject>Transmitters</subject><subject>triad transitions</subject><isbn>9781612847580</isbn><isbn>1612847587</isbn><isbn>0769543758</isbn><isbn>9780769543758</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjMtOwzAURI0QElCyZcPGP5Bwnfi5DIUCUh9Iyb7yK8KiTZDtCvXviQSbmXNmMQjdE6gIAfXYdrttu6lqIKRicIFuQXDFaCOYvESFEpJwUks6K1yjIqVggDDZ1FzyG7TpPz1-Po_6GCzucjzZfIr6gD90zj6OCU8D7iYb5mnr888UvxJ-0sk7PI24j0G7OfWYQg7TmO7Q1aAPyRf_vUD96qVfvpXr3ev7sl2XtuaQS2ocs4OxgjJhZ-YWDLFUG8PBOuIp1DO6Rgjw0jhntdEglDSSODOIZoEe_m6D937_HcNRx_OeKVVzCs0v7qNQDg</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Juszczyszyn, K.</creator><creator>Budka, M.</creator><creator>Musial, K.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20110101</creationdate><title>The Dynamic Structural Patterns of Social Networks Based on Triad Transitions</title><author>Juszczyszyn, K. ; Budka, M. ; Musial, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c260t-4bd5cfbc7457cbd56c0b1c4abb60cd1e402bb6d3770e8bddcaba0798b81dbf73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biology</topic><topic>Complex networks</topic><topic>Electronic mail</topic><topic>Heuristic algorithms</topic><topic>network evolution</topic><topic>Social network</topic><topic>Social network services</topic><topic>Stability analysis</topic><topic>Transmitters</topic><topic>triad transitions</topic><toplevel>online_resources</toplevel><creatorcontrib>Juszczyszyn, K.</creatorcontrib><creatorcontrib>Budka, M.</creatorcontrib><creatorcontrib>Musial, K.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Juszczyszyn, K.</au><au>Budka, M.</au><au>Musial, K.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The Dynamic Structural Patterns of Social Networks Based on Triad Transitions</atitle><btitle>2011 International Conference on Advances in Social Networks Analysis and Mining</btitle><stitle>asonam</stitle><date>2011-01-01</date><risdate>2011</risdate><spage>581</spage><epage>586</epage><pages>581-586</pages><isbn>9781612847580</isbn><isbn>1612847587</isbn><eisbn>0769543758</eisbn><eisbn>9780769543758</eisbn><abstract>In modern social networks built from the data collected in various computer systems we observe constant changes corresponding to external events or the evolution of underlying organizations. In this work we present a new approach to the description and quantifying evolutionary patterns of social networks illustrated with the data from the Enron email dataset. We propose the discovery of local network connection patterns (in this case: triads of nodes), measuring their transitions during network evolution and present the preliminary results of this approach. We define the Triad Transition Matrix (TTM) containing the probabilities of transitions between triads, then we show how it can help to discover the dynamic patterns of network evolution. Also, we analyse the roles performed by different triads in the network evolution by the creation of triad transition graph built from the TTM, which allows us to characterize the tendencies of structural changes in the investigated network. The future applications of our approach are also proposed and discussed.</abstract><pub>IEEE</pub><doi>10.1109/ASONAM.2011.50</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781612847580
ispartof 2011 International Conference on Advances in Social Networks Analysis and Mining, 2011, p.581-586
issn
language eng
recordid cdi_ieee_primary_5992640
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biology
Complex networks
Electronic mail
Heuristic algorithms
network evolution
Social network
Social network services
Stability analysis
Transmitters
triad transitions
title The Dynamic Structural Patterns of Social Networks Based on Triad Transitions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A53%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20Dynamic%20Structural%20Patterns%20of%20Social%20Networks%20Based%20on%20Triad%20Transitions&rft.btitle=2011%20International%20Conference%20on%20Advances%20in%20Social%20Networks%20Analysis%20and%20Mining&rft.au=Juszczyszyn,%20K.&rft.date=2011-01-01&rft.spage=581&rft.epage=586&rft.pages=581-586&rft.isbn=9781612847580&rft.isbn_list=1612847587&rft_id=info:doi/10.1109/ASONAM.2011.50&rft_dat=%3Cieee_6IE%3E5992640%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769543758&rft.eisbn_list=9780769543758&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5992640&rfr_iscdi=true