Capacity estimation for Li-ion batteries

This paper presents onboard capacity estimation algorithms for Li-ion batteries deployed in plug-in hybrid electric vehicles (PHEV) and electric vehicles (EV). Capacity estimation algorithms are developed based on an equivalent circuit model. The onboard estimation of battery capacity is treated sep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Xidong Tang, Xiaofeng Mao, Jian Lin, Koch, Brian
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 952
container_issue
container_start_page 947
container_title
container_volume
creator Xidong Tang
Xiaofeng Mao
Jian Lin
Koch, Brian
description This paper presents onboard capacity estimation algorithms for Li-ion batteries deployed in plug-in hybrid electric vehicles (PHEV) and electric vehicles (EV). Capacity estimation algorithms are developed based on an equivalent circuit model. The onboard estimation of battery capacity is treated separately for the driving mode and plug-in charge mode. Evaluation results on laboratory collected data and vehicle data show the effectiveness of the developed algorithms.
doi_str_mv 10.1109/ACC.2011.5991410
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5991410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5991410</ieee_id><sourcerecordid>5991410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-119be69cc75aeeb12afa8cc76135555a19e96301512548a1262e23b5bf206f123</originalsourceid><addsrcrecordid>eNotT7tqw0AQvLwgsuM-kEZlmlN293SPLY3ICwRunNqcxAouJLGRrvHfRyGaZmYYGGaUukeoEIGftk1TESBWlhlrhAu1YR-wtt4DeA6XqiDjg7bB4ZVaLUGAcK0K8LXR6JBv1WqaPgGQ2UGhHpt4in3K51KmnL5jTsefcjiOZZv0n-xizjImme7UzRC_JtksvFYfL8_75k23u9f3ZtvqnoiyRuROHPe9t1GkQ4pDDLNzaOyMiCzsDKBFsnWISI6ETGe7gcANSGatHv57k4gcTuO8aTwflsfmF7PeQ18</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Capacity estimation for Li-ion batteries</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Xidong Tang ; Xiaofeng Mao ; Jian Lin ; Koch, Brian</creator><creatorcontrib>Xidong Tang ; Xiaofeng Mao ; Jian Lin ; Koch, Brian</creatorcontrib><description>This paper presents onboard capacity estimation algorithms for Li-ion batteries deployed in plug-in hybrid electric vehicles (PHEV) and electric vehicles (EV). Capacity estimation algorithms are developed based on an equivalent circuit model. The onboard estimation of battery capacity is treated separately for the driving mode and plug-in charge mode. Evaluation results on laboratory collected data and vehicle data show the effectiveness of the developed algorithms.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 1457700808</identifier><identifier>ISBN: 9781457700804</identifier><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 9781457700798</identifier><identifier>EISBN: 1457700816</identifier><identifier>EISBN: 9781457700811</identifier><identifier>EISBN: 1457700794</identifier><identifier>DOI: 10.1109/ACC.2011.5991410</identifier><language>eng</language><publisher>IEEE</publisher><subject>Batteries ; Equivalent circuits ; Estimation ; Integrated circuit modeling ; Mathematical model ; System-on-a-chip ; Temperature measurement</subject><ispartof>Proceedings of the 2011 American Control Conference, 2011, p.947-952</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c222t-119be69cc75aeeb12afa8cc76135555a19e96301512548a1262e23b5bf206f123</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5991410$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5991410$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xidong Tang</creatorcontrib><creatorcontrib>Xiaofeng Mao</creatorcontrib><creatorcontrib>Jian Lin</creatorcontrib><creatorcontrib>Koch, Brian</creatorcontrib><title>Capacity estimation for Li-ion batteries</title><title>Proceedings of the 2011 American Control Conference</title><addtitle>ACC</addtitle><description>This paper presents onboard capacity estimation algorithms for Li-ion batteries deployed in plug-in hybrid electric vehicles (PHEV) and electric vehicles (EV). Capacity estimation algorithms are developed based on an equivalent circuit model. The onboard estimation of battery capacity is treated separately for the driving mode and plug-in charge mode. Evaluation results on laboratory collected data and vehicle data show the effectiveness of the developed algorithms.</description><subject>Batteries</subject><subject>Equivalent circuits</subject><subject>Estimation</subject><subject>Integrated circuit modeling</subject><subject>Mathematical model</subject><subject>System-on-a-chip</subject><subject>Temperature measurement</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>1457700808</isbn><isbn>9781457700804</isbn><isbn>9781457700798</isbn><isbn>1457700816</isbn><isbn>9781457700811</isbn><isbn>1457700794</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotT7tqw0AQvLwgsuM-kEZlmlN293SPLY3ICwRunNqcxAouJLGRrvHfRyGaZmYYGGaUukeoEIGftk1TESBWlhlrhAu1YR-wtt4DeA6XqiDjg7bB4ZVaLUGAcK0K8LXR6JBv1WqaPgGQ2UGhHpt4in3K51KmnL5jTsefcjiOZZv0n-xizjImme7UzRC_JtksvFYfL8_75k23u9f3ZtvqnoiyRuROHPe9t1GkQ4pDDLNzaOyMiCzsDKBFsnWISI6ETGe7gcANSGatHv57k4gcTuO8aTwflsfmF7PeQ18</recordid><startdate>201106</startdate><enddate>201106</enddate><creator>Xidong Tang</creator><creator>Xiaofeng Mao</creator><creator>Jian Lin</creator><creator>Koch, Brian</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201106</creationdate><title>Capacity estimation for Li-ion batteries</title><author>Xidong Tang ; Xiaofeng Mao ; Jian Lin ; Koch, Brian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-119be69cc75aeeb12afa8cc76135555a19e96301512548a1262e23b5bf206f123</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Batteries</topic><topic>Equivalent circuits</topic><topic>Estimation</topic><topic>Integrated circuit modeling</topic><topic>Mathematical model</topic><topic>System-on-a-chip</topic><topic>Temperature measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Xidong Tang</creatorcontrib><creatorcontrib>Xiaofeng Mao</creatorcontrib><creatorcontrib>Jian Lin</creatorcontrib><creatorcontrib>Koch, Brian</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xidong Tang</au><au>Xiaofeng Mao</au><au>Jian Lin</au><au>Koch, Brian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Capacity estimation for Li-ion batteries</atitle><btitle>Proceedings of the 2011 American Control Conference</btitle><stitle>ACC</stitle><date>2011-06</date><risdate>2011</risdate><spage>947</spage><epage>952</epage><pages>947-952</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>1457700808</isbn><isbn>9781457700804</isbn><eisbn>9781457700798</eisbn><eisbn>1457700816</eisbn><eisbn>9781457700811</eisbn><eisbn>1457700794</eisbn><abstract>This paper presents onboard capacity estimation algorithms for Li-ion batteries deployed in plug-in hybrid electric vehicles (PHEV) and electric vehicles (EV). Capacity estimation algorithms are developed based on an equivalent circuit model. The onboard estimation of battery capacity is treated separately for the driving mode and plug-in charge mode. Evaluation results on laboratory collected data and vehicle data show the effectiveness of the developed algorithms.</abstract><pub>IEEE</pub><doi>10.1109/ACC.2011.5991410</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0743-1619
ispartof Proceedings of the 2011 American Control Conference, 2011, p.947-952
issn 0743-1619
2378-5861
language eng
recordid cdi_ieee_primary_5991410
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Batteries
Equivalent circuits
Estimation
Integrated circuit modeling
Mathematical model
System-on-a-chip
Temperature measurement
title Capacity estimation for Li-ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A56%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Capacity%20estimation%20for%20Li-ion%20batteries&rft.btitle=Proceedings%20of%20the%202011%20American%20Control%20Conference&rft.au=Xidong%20Tang&rft.date=2011-06&rft.spage=947&rft.epage=952&rft.pages=947-952&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=1457700808&rft.isbn_list=9781457700804&rft_id=info:doi/10.1109/ACC.2011.5991410&rft_dat=%3Cieee_6IE%3E5991410%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457700798&rft.eisbn_list=1457700816&rft.eisbn_list=9781457700811&rft.eisbn_list=1457700794&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5991410&rfr_iscdi=true