Incorporating prior knowledge into nonparametric conditional density estimation
In this paper, the problem of sparse nonparametric conditional density estimation based on samples and prior knowledge is addressed. The prior knowledge may be restricted to parts of the state space and given as generative models in form of mean-function constraints or as probabilistic models in the...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2455 |
---|---|
container_issue | |
container_start_page | 2450 |
container_title | |
container_volume | |
creator | Krauthausen, Peter Roschani, Masoud Hanebeck, Uwe D. |
description | In this paper, the problem of sparse nonparametric conditional density estimation based on samples and prior knowledge is addressed. The prior knowledge may be restricted to parts of the state space and given as generative models in form of mean-function constraints or as probabilistic models in the form of Gaussian mixture densities. The key idea is the introduction of additional constraints and a modified kernel function into the conditional density estimation problem. This approach to using prior knowledge is applicable to all nonparametric conditional density estimation approaches phrased as constrained optimization problems. The quality of the estimates, their sparseness, and the achievable improvements by using prior knowledge are shown in experiments for both Support-Vector Machine-based and integral distance based conditional density estimation algorithms. |
doi_str_mv | 10.1109/ACC.2011.5991394 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5991394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5991394</ieee_id><sourcerecordid>5991394</sourcerecordid><originalsourceid>FETCH-LOGICAL-i217t-c9dcec3ad01e1b5e256992b526c48f98e0d4f0ab451566c30e1e4c86ce874f213</originalsourceid><addsrcrecordid>eNotkEtLAzEUheMLbGv3gpv5A1PvzTvLMvgoFLrRdUkzd0q0TUomIP57Fbs6cD44fBzG7hEWiOAel1234IC4UM6hcPKCzZ2xKJUxAMbZSzbhwthWWY1XbHoGFuw1m4CRokWN7pZNx_EDAJ3TMGGbVQq5nHLxNaZ9cyoxl-Yz5a8D9XtqYqq5STmdfPFHqiWGJuTUxxpz8oempzTG-t3QWOPR_5V37Gbwh5Hm55yx9-ent-61XW9eVt1y3UaOprbB9YGC8D0g4U4RV9o5vlNcB2kHZwl6OYDfSYVK6yCAkGSwOpA1cuAoZuzhfzcS0fZX--jL9_Z8jPgBpeJUiQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Incorporating prior knowledge into nonparametric conditional density estimation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Krauthausen, Peter ; Roschani, Masoud ; Hanebeck, Uwe D.</creator><creatorcontrib>Krauthausen, Peter ; Roschani, Masoud ; Hanebeck, Uwe D.</creatorcontrib><description>In this paper, the problem of sparse nonparametric conditional density estimation based on samples and prior knowledge is addressed. The prior knowledge may be restricted to parts of the state space and given as generative models in form of mean-function constraints or as probabilistic models in the form of Gaussian mixture densities. The key idea is the introduction of additional constraints and a modified kernel function into the conditional density estimation problem. This approach to using prior knowledge is applicable to all nonparametric conditional density estimation approaches phrased as constrained optimization problems. The quality of the estimates, their sparseness, and the achievable improvements by using prior knowledge are shown in experiments for both Support-Vector Machine-based and integral distance based conditional density estimation algorithms.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 1457700808</identifier><identifier>ISBN: 9781457700804</identifier><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 9781457700798</identifier><identifier>EISBN: 1457700816</identifier><identifier>EISBN: 9781457700811</identifier><identifier>EISBN: 1457700794</identifier><identifier>DOI: 10.1109/ACC.2011.5991394</identifier><language>eng</language><publisher>IEEE</publisher><subject>Encoding ; Estimation ; Kernel ; Optimization ; Probabilistic logic ; Robots ; Training</subject><ispartof>Proceedings of the 2011 American Control Conference, 2011, p.2450-2455</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5991394$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5991394$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Krauthausen, Peter</creatorcontrib><creatorcontrib>Roschani, Masoud</creatorcontrib><creatorcontrib>Hanebeck, Uwe D.</creatorcontrib><title>Incorporating prior knowledge into nonparametric conditional density estimation</title><title>Proceedings of the 2011 American Control Conference</title><addtitle>ACC</addtitle><description>In this paper, the problem of sparse nonparametric conditional density estimation based on samples and prior knowledge is addressed. The prior knowledge may be restricted to parts of the state space and given as generative models in form of mean-function constraints or as probabilistic models in the form of Gaussian mixture densities. The key idea is the introduction of additional constraints and a modified kernel function into the conditional density estimation problem. This approach to using prior knowledge is applicable to all nonparametric conditional density estimation approaches phrased as constrained optimization problems. The quality of the estimates, their sparseness, and the achievable improvements by using prior knowledge are shown in experiments for both Support-Vector Machine-based and integral distance based conditional density estimation algorithms.</description><subject>Encoding</subject><subject>Estimation</subject><subject>Kernel</subject><subject>Optimization</subject><subject>Probabilistic logic</subject><subject>Robots</subject><subject>Training</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>1457700808</isbn><isbn>9781457700804</isbn><isbn>9781457700798</isbn><isbn>1457700816</isbn><isbn>9781457700811</isbn><isbn>1457700794</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkEtLAzEUheMLbGv3gpv5A1PvzTvLMvgoFLrRdUkzd0q0TUomIP57Fbs6cD44fBzG7hEWiOAel1234IC4UM6hcPKCzZ2xKJUxAMbZSzbhwthWWY1XbHoGFuw1m4CRokWN7pZNx_EDAJ3TMGGbVQq5nHLxNaZ9cyoxl-Yz5a8D9XtqYqq5STmdfPFHqiWGJuTUxxpz8oempzTG-t3QWOPR_5V37Gbwh5Hm55yx9-ent-61XW9eVt1y3UaOprbB9YGC8D0g4U4RV9o5vlNcB2kHZwl6OYDfSYVK6yCAkGSwOpA1cuAoZuzhfzcS0fZX--jL9_Z8jPgBpeJUiQ</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Krauthausen, Peter</creator><creator>Roschani, Masoud</creator><creator>Hanebeck, Uwe D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20110101</creationdate><title>Incorporating prior knowledge into nonparametric conditional density estimation</title><author>Krauthausen, Peter ; Roschani, Masoud ; Hanebeck, Uwe D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i217t-c9dcec3ad01e1b5e256992b526c48f98e0d4f0ab451566c30e1e4c86ce874f213</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Encoding</topic><topic>Estimation</topic><topic>Kernel</topic><topic>Optimization</topic><topic>Probabilistic logic</topic><topic>Robots</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Krauthausen, Peter</creatorcontrib><creatorcontrib>Roschani, Masoud</creatorcontrib><creatorcontrib>Hanebeck, Uwe D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Krauthausen, Peter</au><au>Roschani, Masoud</au><au>Hanebeck, Uwe D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Incorporating prior knowledge into nonparametric conditional density estimation</atitle><btitle>Proceedings of the 2011 American Control Conference</btitle><stitle>ACC</stitle><date>2011-01-01</date><risdate>2011</risdate><spage>2450</spage><epage>2455</epage><pages>2450-2455</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>1457700808</isbn><isbn>9781457700804</isbn><eisbn>9781457700798</eisbn><eisbn>1457700816</eisbn><eisbn>9781457700811</eisbn><eisbn>1457700794</eisbn><abstract>In this paper, the problem of sparse nonparametric conditional density estimation based on samples and prior knowledge is addressed. The prior knowledge may be restricted to parts of the state space and given as generative models in form of mean-function constraints or as probabilistic models in the form of Gaussian mixture densities. The key idea is the introduction of additional constraints and a modified kernel function into the conditional density estimation problem. This approach to using prior knowledge is applicable to all nonparametric conditional density estimation approaches phrased as constrained optimization problems. The quality of the estimates, their sparseness, and the achievable improvements by using prior knowledge are shown in experiments for both Support-Vector Machine-based and integral distance based conditional density estimation algorithms.</abstract><pub>IEEE</pub><doi>10.1109/ACC.2011.5991394</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0743-1619 |
ispartof | Proceedings of the 2011 American Control Conference, 2011, p.2450-2455 |
issn | 0743-1619 2378-5861 |
language | eng |
recordid | cdi_ieee_primary_5991394 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Encoding Estimation Kernel Optimization Probabilistic logic Robots Training |
title | Incorporating prior knowledge into nonparametric conditional density estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A59%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Incorporating%20prior%20knowledge%20into%20nonparametric%20conditional%20density%20estimation&rft.btitle=Proceedings%20of%20the%202011%20American%20Control%20Conference&rft.au=Krauthausen,%20Peter&rft.date=2011-01-01&rft.spage=2450&rft.epage=2455&rft.pages=2450-2455&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=1457700808&rft.isbn_list=9781457700804&rft_id=info:doi/10.1109/ACC.2011.5991394&rft_dat=%3Cieee_6IE%3E5991394%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457700798&rft.eisbn_list=1457700816&rft.eisbn_list=9781457700811&rft.eisbn_list=1457700794&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5991394&rfr_iscdi=true |