Incorporating prior knowledge into nonparametric conditional density estimation

In this paper, the problem of sparse nonparametric conditional density estimation based on samples and prior knowledge is addressed. The prior knowledge may be restricted to parts of the state space and given as generative models in form of mean-function constraints or as probabilistic models in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Krauthausen, Peter, Roschani, Masoud, Hanebeck, Uwe D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2455
container_issue
container_start_page 2450
container_title
container_volume
creator Krauthausen, Peter
Roschani, Masoud
Hanebeck, Uwe D.
description In this paper, the problem of sparse nonparametric conditional density estimation based on samples and prior knowledge is addressed. The prior knowledge may be restricted to parts of the state space and given as generative models in form of mean-function constraints or as probabilistic models in the form of Gaussian mixture densities. The key idea is the introduction of additional constraints and a modified kernel function into the conditional density estimation problem. This approach to using prior knowledge is applicable to all nonparametric conditional density estimation approaches phrased as constrained optimization problems. The quality of the estimates, their sparseness, and the achievable improvements by using prior knowledge are shown in experiments for both Support-Vector Machine-based and integral distance based conditional density estimation algorithms.
doi_str_mv 10.1109/ACC.2011.5991394
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5991394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5991394</ieee_id><sourcerecordid>5991394</sourcerecordid><originalsourceid>FETCH-LOGICAL-i217t-c9dcec3ad01e1b5e256992b526c48f98e0d4f0ab451566c30e1e4c86ce874f213</originalsourceid><addsrcrecordid>eNotkEtLAzEUheMLbGv3gpv5A1PvzTvLMvgoFLrRdUkzd0q0TUomIP57Fbs6cD44fBzG7hEWiOAel1234IC4UM6hcPKCzZ2xKJUxAMbZSzbhwthWWY1XbHoGFuw1m4CRokWN7pZNx_EDAJ3TMGGbVQq5nHLxNaZ9cyoxl-Yz5a8D9XtqYqq5STmdfPFHqiWGJuTUxxpz8oempzTG-t3QWOPR_5V37Gbwh5Hm55yx9-ent-61XW9eVt1y3UaOprbB9YGC8D0g4U4RV9o5vlNcB2kHZwl6OYDfSYVK6yCAkGSwOpA1cuAoZuzhfzcS0fZX--jL9_Z8jPgBpeJUiQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Incorporating prior knowledge into nonparametric conditional density estimation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Krauthausen, Peter ; Roschani, Masoud ; Hanebeck, Uwe D.</creator><creatorcontrib>Krauthausen, Peter ; Roschani, Masoud ; Hanebeck, Uwe D.</creatorcontrib><description>In this paper, the problem of sparse nonparametric conditional density estimation based on samples and prior knowledge is addressed. The prior knowledge may be restricted to parts of the state space and given as generative models in form of mean-function constraints or as probabilistic models in the form of Gaussian mixture densities. The key idea is the introduction of additional constraints and a modified kernel function into the conditional density estimation problem. This approach to using prior knowledge is applicable to all nonparametric conditional density estimation approaches phrased as constrained optimization problems. The quality of the estimates, their sparseness, and the achievable improvements by using prior knowledge are shown in experiments for both Support-Vector Machine-based and integral distance based conditional density estimation algorithms.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 1457700808</identifier><identifier>ISBN: 9781457700804</identifier><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 9781457700798</identifier><identifier>EISBN: 1457700816</identifier><identifier>EISBN: 9781457700811</identifier><identifier>EISBN: 1457700794</identifier><identifier>DOI: 10.1109/ACC.2011.5991394</identifier><language>eng</language><publisher>IEEE</publisher><subject>Encoding ; Estimation ; Kernel ; Optimization ; Probabilistic logic ; Robots ; Training</subject><ispartof>Proceedings of the 2011 American Control Conference, 2011, p.2450-2455</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5991394$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27912,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5991394$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Krauthausen, Peter</creatorcontrib><creatorcontrib>Roschani, Masoud</creatorcontrib><creatorcontrib>Hanebeck, Uwe D.</creatorcontrib><title>Incorporating prior knowledge into nonparametric conditional density estimation</title><title>Proceedings of the 2011 American Control Conference</title><addtitle>ACC</addtitle><description>In this paper, the problem of sparse nonparametric conditional density estimation based on samples and prior knowledge is addressed. The prior knowledge may be restricted to parts of the state space and given as generative models in form of mean-function constraints or as probabilistic models in the form of Gaussian mixture densities. The key idea is the introduction of additional constraints and a modified kernel function into the conditional density estimation problem. This approach to using prior knowledge is applicable to all nonparametric conditional density estimation approaches phrased as constrained optimization problems. The quality of the estimates, their sparseness, and the achievable improvements by using prior knowledge are shown in experiments for both Support-Vector Machine-based and integral distance based conditional density estimation algorithms.</description><subject>Encoding</subject><subject>Estimation</subject><subject>Kernel</subject><subject>Optimization</subject><subject>Probabilistic logic</subject><subject>Robots</subject><subject>Training</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>1457700808</isbn><isbn>9781457700804</isbn><isbn>9781457700798</isbn><isbn>1457700816</isbn><isbn>9781457700811</isbn><isbn>1457700794</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2011</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkEtLAzEUheMLbGv3gpv5A1PvzTvLMvgoFLrRdUkzd0q0TUomIP57Fbs6cD44fBzG7hEWiOAel1234IC4UM6hcPKCzZ2xKJUxAMbZSzbhwthWWY1XbHoGFuw1m4CRokWN7pZNx_EDAJ3TMGGbVQq5nHLxNaZ9cyoxl-Yz5a8D9XtqYqq5STmdfPFHqiWGJuTUxxpz8oempzTG-t3QWOPR_5V37Gbwh5Hm55yx9-ent-61XW9eVt1y3UaOprbB9YGC8D0g4U4RV9o5vlNcB2kHZwl6OYDfSYVK6yCAkGSwOpA1cuAoZuzhfzcS0fZX--jL9_Z8jPgBpeJUiQ</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Krauthausen, Peter</creator><creator>Roschani, Masoud</creator><creator>Hanebeck, Uwe D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20110101</creationdate><title>Incorporating prior knowledge into nonparametric conditional density estimation</title><author>Krauthausen, Peter ; Roschani, Masoud ; Hanebeck, Uwe D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i217t-c9dcec3ad01e1b5e256992b526c48f98e0d4f0ab451566c30e1e4c86ce874f213</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Encoding</topic><topic>Estimation</topic><topic>Kernel</topic><topic>Optimization</topic><topic>Probabilistic logic</topic><topic>Robots</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Krauthausen, Peter</creatorcontrib><creatorcontrib>Roschani, Masoud</creatorcontrib><creatorcontrib>Hanebeck, Uwe D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Krauthausen, Peter</au><au>Roschani, Masoud</au><au>Hanebeck, Uwe D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Incorporating prior knowledge into nonparametric conditional density estimation</atitle><btitle>Proceedings of the 2011 American Control Conference</btitle><stitle>ACC</stitle><date>2011-01-01</date><risdate>2011</risdate><spage>2450</spage><epage>2455</epage><pages>2450-2455</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>1457700808</isbn><isbn>9781457700804</isbn><eisbn>9781457700798</eisbn><eisbn>1457700816</eisbn><eisbn>9781457700811</eisbn><eisbn>1457700794</eisbn><abstract>In this paper, the problem of sparse nonparametric conditional density estimation based on samples and prior knowledge is addressed. The prior knowledge may be restricted to parts of the state space and given as generative models in form of mean-function constraints or as probabilistic models in the form of Gaussian mixture densities. The key idea is the introduction of additional constraints and a modified kernel function into the conditional density estimation problem. This approach to using prior knowledge is applicable to all nonparametric conditional density estimation approaches phrased as constrained optimization problems. The quality of the estimates, their sparseness, and the achievable improvements by using prior knowledge are shown in experiments for both Support-Vector Machine-based and integral distance based conditional density estimation algorithms.</abstract><pub>IEEE</pub><doi>10.1109/ACC.2011.5991394</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0743-1619
ispartof Proceedings of the 2011 American Control Conference, 2011, p.2450-2455
issn 0743-1619
2378-5861
language eng
recordid cdi_ieee_primary_5991394
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Encoding
Estimation
Kernel
Optimization
Probabilistic logic
Robots
Training
title Incorporating prior knowledge into nonparametric conditional density estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T14%3A59%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Incorporating%20prior%20knowledge%20into%20nonparametric%20conditional%20density%20estimation&rft.btitle=Proceedings%20of%20the%202011%20American%20Control%20Conference&rft.au=Krauthausen,%20Peter&rft.date=2011-01-01&rft.spage=2450&rft.epage=2455&rft.pages=2450-2455&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=1457700808&rft.isbn_list=9781457700804&rft_id=info:doi/10.1109/ACC.2011.5991394&rft_dat=%3Cieee_6IE%3E5991394%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781457700798&rft.eisbn_list=1457700816&rft.eisbn_list=9781457700811&rft.eisbn_list=1457700794&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5991394&rfr_iscdi=true