Fast algorithms for regularized minimum norm solutions to inverse problems
The computational cost of solving biomedical inverse problems is extremely high. As a result, expensive high end computational platforms are required for processing and at times a trade-off must be made between accuracy and cost of computation. We present two fast computational algorithms for solvin...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1217 vol.2 |
---|---|
container_issue | |
container_start_page | 1213 |
container_title | |
container_volume | 2 |
creator | Gorodnitsky, I.F. Beransky, D. |
description | The computational cost of solving biomedical inverse problems is extremely high. As a result, expensive high end computational platforms are required for processing and at times a trade-off must be made between accuracy and cost of computation. We present two fast computational algorithms for solving regularized inverse problems. The computational advantages are obtained by utilizing the extreme discrepancy between the dimension of the solution space and the measured data sets. The algorithms implement two common regularization procedures, Tikhonov regularization and truncated singular value decomposition (TSVD). The algorithms do not compromise the numerical accuracy of the solutions. Comparisons of costs of the conventional and proposed algorithms are given. Although the algorithms are presented in the context of biomedical inverse problems, they are applicable to any inverse problem with same characteristics, such as the geophysical inverse problems and non-destructive evaluation. |
doi_str_mv | 10.1109/ACSSC.1996.599137 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_599137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>599137</ieee_id><sourcerecordid>16053216</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-bfda9dfc7066f686043ba5f8d2a27215c2f12ff04e7555da6853521cf71f92f23</originalsourceid><addsrcrecordid>eNotULtOwzAAtHhIRKUfAJMntgQ_4tdYRZSHKjEU5shJ7GJkx8VOkODriVRuueFOd6cD4AajCmOk7jfNft9UWCleMaUwFWegIEzwklBEz8FaCYkkllzwmssLUGDEZMmpoldgnfMnWlDTetEL8LLVeYLaH2Jy00fI0MYEkznMXif3awYY3OjCHOAYU4A5-nlyccxwitCN3yZlA48pdt6EfA0urfbZrP95Bd63D2_NU7l7fXxuNrvSEUSnsrODVoPtBeLccsmXKZ1mVg5EE0Ew64nFxFpUG8EYGzSXjDKCeyuwVcQSugJ3p9yl-Gs2eWqDy73xXo8mzrnFHDFKMF-MtyejM8a0x-SCTj_t6TH6B-ydXf4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>16053216</pqid></control><display><type>conference_proceeding</type><title>Fast algorithms for regularized minimum norm solutions to inverse problems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gorodnitsky, I.F. ; Beransky, D.</creator><creatorcontrib>Gorodnitsky, I.F. ; Beransky, D.</creatorcontrib><description>The computational cost of solving biomedical inverse problems is extremely high. As a result, expensive high end computational platforms are required for processing and at times a trade-off must be made between accuracy and cost of computation. We present two fast computational algorithms for solving regularized inverse problems. The computational advantages are obtained by utilizing the extreme discrepancy between the dimension of the solution space and the measured data sets. The algorithms implement two common regularization procedures, Tikhonov regularization and truncated singular value decomposition (TSVD). The algorithms do not compromise the numerical accuracy of the solutions. Comparisons of costs of the conventional and proposed algorithms are given. Although the algorithms are presented in the context of biomedical inverse problems, they are applicable to any inverse problem with same characteristics, such as the geophysical inverse problems and non-destructive evaluation.</description><identifier>ISSN: 1058-6393</identifier><identifier>ISBN: 9780818676468</identifier><identifier>ISBN: 0818676469</identifier><identifier>EISSN: 2576-2303</identifier><identifier>DOI: 10.1109/ACSSC.1996.599137</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical computing ; Biomedical measurements ; Computational efficiency ; Costs ; Geophysical measurements ; Geophysics computing ; Inverse problems ; Numerical analysis ; Singular value decomposition ; Time measurement</subject><ispartof>Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers, 1996, Vol.2, p.1213-1217 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/599137$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,25140,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/599137$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gorodnitsky, I.F.</creatorcontrib><creatorcontrib>Beransky, D.</creatorcontrib><title>Fast algorithms for regularized minimum norm solutions to inverse problems</title><title>Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers</title><addtitle>ACSSC</addtitle><description>The computational cost of solving biomedical inverse problems is extremely high. As a result, expensive high end computational platforms are required for processing and at times a trade-off must be made between accuracy and cost of computation. We present two fast computational algorithms for solving regularized inverse problems. The computational advantages are obtained by utilizing the extreme discrepancy between the dimension of the solution space and the measured data sets. The algorithms implement two common regularization procedures, Tikhonov regularization and truncated singular value decomposition (TSVD). The algorithms do not compromise the numerical accuracy of the solutions. Comparisons of costs of the conventional and proposed algorithms are given. Although the algorithms are presented in the context of biomedical inverse problems, they are applicable to any inverse problem with same characteristics, such as the geophysical inverse problems and non-destructive evaluation.</description><subject>Biomedical computing</subject><subject>Biomedical measurements</subject><subject>Computational efficiency</subject><subject>Costs</subject><subject>Geophysical measurements</subject><subject>Geophysics computing</subject><subject>Inverse problems</subject><subject>Numerical analysis</subject><subject>Singular value decomposition</subject><subject>Time measurement</subject><issn>1058-6393</issn><issn>2576-2303</issn><isbn>9780818676468</isbn><isbn>0818676469</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1996</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotULtOwzAAtHhIRKUfAJMntgQ_4tdYRZSHKjEU5shJ7GJkx8VOkODriVRuueFOd6cD4AajCmOk7jfNft9UWCleMaUwFWegIEzwklBEz8FaCYkkllzwmssLUGDEZMmpoldgnfMnWlDTetEL8LLVeYLaH2Jy00fI0MYEkznMXif3awYY3OjCHOAYU4A5-nlyccxwitCN3yZlA48pdt6EfA0urfbZrP95Bd63D2_NU7l7fXxuNrvSEUSnsrODVoPtBeLccsmXKZ1mVg5EE0Ew64nFxFpUG8EYGzSXjDKCeyuwVcQSugJ3p9yl-Gs2eWqDy73xXo8mzrnFHDFKMF-MtyejM8a0x-SCTj_t6TH6B-ydXf4</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Gorodnitsky, I.F.</creator><creator>Beransky, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>1996</creationdate><title>Fast algorithms for regularized minimum norm solutions to inverse problems</title><author>Gorodnitsky, I.F. ; Beransky, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-bfda9dfc7066f686043ba5f8d2a27215c2f12ff04e7555da6853521cf71f92f23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Biomedical computing</topic><topic>Biomedical measurements</topic><topic>Computational efficiency</topic><topic>Costs</topic><topic>Geophysical measurements</topic><topic>Geophysics computing</topic><topic>Inverse problems</topic><topic>Numerical analysis</topic><topic>Singular value decomposition</topic><topic>Time measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Gorodnitsky, I.F.</creatorcontrib><creatorcontrib>Beransky, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gorodnitsky, I.F.</au><au>Beransky, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fast algorithms for regularized minimum norm solutions to inverse problems</atitle><btitle>Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers</btitle><stitle>ACSSC</stitle><date>1996</date><risdate>1996</risdate><volume>2</volume><spage>1213</spage><epage>1217 vol.2</epage><pages>1213-1217 vol.2</pages><issn>1058-6393</issn><eissn>2576-2303</eissn><isbn>9780818676468</isbn><isbn>0818676469</isbn><abstract>The computational cost of solving biomedical inverse problems is extremely high. As a result, expensive high end computational platforms are required for processing and at times a trade-off must be made between accuracy and cost of computation. We present two fast computational algorithms for solving regularized inverse problems. The computational advantages are obtained by utilizing the extreme discrepancy between the dimension of the solution space and the measured data sets. The algorithms implement two common regularization procedures, Tikhonov regularization and truncated singular value decomposition (TSVD). The algorithms do not compromise the numerical accuracy of the solutions. Comparisons of costs of the conventional and proposed algorithms are given. Although the algorithms are presented in the context of biomedical inverse problems, they are applicable to any inverse problem with same characteristics, such as the geophysical inverse problems and non-destructive evaluation.</abstract><pub>IEEE</pub><doi>10.1109/ACSSC.1996.599137</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1058-6393 |
ispartof | Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers, 1996, Vol.2, p.1213-1217 vol.2 |
issn | 1058-6393 2576-2303 |
language | eng |
recordid | cdi_ieee_primary_599137 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Biomedical computing Biomedical measurements Computational efficiency Costs Geophysical measurements Geophysics computing Inverse problems Numerical analysis Singular value decomposition Time measurement |
title | Fast algorithms for regularized minimum norm solutions to inverse problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A54%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fast%20algorithms%20for%20regularized%20minimum%20norm%20solutions%20to%20inverse%20problems&rft.btitle=Conference%20Record%20of%20The%20Thirtieth%20Asilomar%20Conference%20on%20Signals,%20Systems%20and%20Computers&rft.au=Gorodnitsky,%20I.F.&rft.date=1996&rft.volume=2&rft.spage=1213&rft.epage=1217%20vol.2&rft.pages=1213-1217%20vol.2&rft.issn=1058-6393&rft.eissn=2576-2303&rft.isbn=9780818676468&rft.isbn_list=0818676469&rft_id=info:doi/10.1109/ACSSC.1996.599137&rft_dat=%3Cproquest_6IE%3E16053216%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16053216&rft_id=info:pmid/&rft_ieee_id=599137&rfr_iscdi=true |