Fast algorithms for regularized minimum norm solutions to inverse problems

The computational cost of solving biomedical inverse problems is extremely high. As a result, expensive high end computational platforms are required for processing and at times a trade-off must be made between accuracy and cost of computation. We present two fast computational algorithms for solvin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Gorodnitsky, I.F., Beransky, D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1217 vol.2
container_issue
container_start_page 1213
container_title
container_volume 2
creator Gorodnitsky, I.F.
Beransky, D.
description The computational cost of solving biomedical inverse problems is extremely high. As a result, expensive high end computational platforms are required for processing and at times a trade-off must be made between accuracy and cost of computation. We present two fast computational algorithms for solving regularized inverse problems. The computational advantages are obtained by utilizing the extreme discrepancy between the dimension of the solution space and the measured data sets. The algorithms implement two common regularization procedures, Tikhonov regularization and truncated singular value decomposition (TSVD). The algorithms do not compromise the numerical accuracy of the solutions. Comparisons of costs of the conventional and proposed algorithms are given. Although the algorithms are presented in the context of biomedical inverse problems, they are applicable to any inverse problem with same characteristics, such as the geophysical inverse problems and non-destructive evaluation.
doi_str_mv 10.1109/ACSSC.1996.599137
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_599137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>599137</ieee_id><sourcerecordid>16053216</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-bfda9dfc7066f686043ba5f8d2a27215c2f12ff04e7555da6853521cf71f92f23</originalsourceid><addsrcrecordid>eNotULtOwzAAtHhIRKUfAJMntgQ_4tdYRZSHKjEU5shJ7GJkx8VOkODriVRuueFOd6cD4AajCmOk7jfNft9UWCleMaUwFWegIEzwklBEz8FaCYkkllzwmssLUGDEZMmpoldgnfMnWlDTetEL8LLVeYLaH2Jy00fI0MYEkznMXif3awYY3OjCHOAYU4A5-nlyccxwitCN3yZlA48pdt6EfA0urfbZrP95Bd63D2_NU7l7fXxuNrvSEUSnsrODVoPtBeLccsmXKZ1mVg5EE0Ew64nFxFpUG8EYGzSXjDKCeyuwVcQSugJ3p9yl-Gs2eWqDy73xXo8mzrnFHDFKMF-MtyejM8a0x-SCTj_t6TH6B-ydXf4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>16053216</pqid></control><display><type>conference_proceeding</type><title>Fast algorithms for regularized minimum norm solutions to inverse problems</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Gorodnitsky, I.F. ; Beransky, D.</creator><creatorcontrib>Gorodnitsky, I.F. ; Beransky, D.</creatorcontrib><description>The computational cost of solving biomedical inverse problems is extremely high. As a result, expensive high end computational platforms are required for processing and at times a trade-off must be made between accuracy and cost of computation. We present two fast computational algorithms for solving regularized inverse problems. The computational advantages are obtained by utilizing the extreme discrepancy between the dimension of the solution space and the measured data sets. The algorithms implement two common regularization procedures, Tikhonov regularization and truncated singular value decomposition (TSVD). The algorithms do not compromise the numerical accuracy of the solutions. Comparisons of costs of the conventional and proposed algorithms are given. Although the algorithms are presented in the context of biomedical inverse problems, they are applicable to any inverse problem with same characteristics, such as the geophysical inverse problems and non-destructive evaluation.</description><identifier>ISSN: 1058-6393</identifier><identifier>ISBN: 9780818676468</identifier><identifier>ISBN: 0818676469</identifier><identifier>EISSN: 2576-2303</identifier><identifier>DOI: 10.1109/ACSSC.1996.599137</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biomedical computing ; Biomedical measurements ; Computational efficiency ; Costs ; Geophysical measurements ; Geophysics computing ; Inverse problems ; Numerical analysis ; Singular value decomposition ; Time measurement</subject><ispartof>Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers, 1996, Vol.2, p.1213-1217 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/599137$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,25140,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/599137$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gorodnitsky, I.F.</creatorcontrib><creatorcontrib>Beransky, D.</creatorcontrib><title>Fast algorithms for regularized minimum norm solutions to inverse problems</title><title>Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers</title><addtitle>ACSSC</addtitle><description>The computational cost of solving biomedical inverse problems is extremely high. As a result, expensive high end computational platforms are required for processing and at times a trade-off must be made between accuracy and cost of computation. We present two fast computational algorithms for solving regularized inverse problems. The computational advantages are obtained by utilizing the extreme discrepancy between the dimension of the solution space and the measured data sets. The algorithms implement two common regularization procedures, Tikhonov regularization and truncated singular value decomposition (TSVD). The algorithms do not compromise the numerical accuracy of the solutions. Comparisons of costs of the conventional and proposed algorithms are given. Although the algorithms are presented in the context of biomedical inverse problems, they are applicable to any inverse problem with same characteristics, such as the geophysical inverse problems and non-destructive evaluation.</description><subject>Biomedical computing</subject><subject>Biomedical measurements</subject><subject>Computational efficiency</subject><subject>Costs</subject><subject>Geophysical measurements</subject><subject>Geophysics computing</subject><subject>Inverse problems</subject><subject>Numerical analysis</subject><subject>Singular value decomposition</subject><subject>Time measurement</subject><issn>1058-6393</issn><issn>2576-2303</issn><isbn>9780818676468</isbn><isbn>0818676469</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1996</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotULtOwzAAtHhIRKUfAJMntgQ_4tdYRZSHKjEU5shJ7GJkx8VOkODriVRuueFOd6cD4AajCmOk7jfNft9UWCleMaUwFWegIEzwklBEz8FaCYkkllzwmssLUGDEZMmpoldgnfMnWlDTetEL8LLVeYLaH2Jy00fI0MYEkznMXif3awYY3OjCHOAYU4A5-nlyccxwitCN3yZlA48pdt6EfA0urfbZrP95Bd63D2_NU7l7fXxuNrvSEUSnsrODVoPtBeLccsmXKZ1mVg5EE0Ew64nFxFpUG8EYGzSXjDKCeyuwVcQSugJ3p9yl-Gs2eWqDy73xXo8mzrnFHDFKMF-MtyejM8a0x-SCTj_t6TH6B-ydXf4</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Gorodnitsky, I.F.</creator><creator>Beransky, D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>1996</creationdate><title>Fast algorithms for regularized minimum norm solutions to inverse problems</title><author>Gorodnitsky, I.F. ; Beransky, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-bfda9dfc7066f686043ba5f8d2a27215c2f12ff04e7555da6853521cf71f92f23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Biomedical computing</topic><topic>Biomedical measurements</topic><topic>Computational efficiency</topic><topic>Costs</topic><topic>Geophysical measurements</topic><topic>Geophysics computing</topic><topic>Inverse problems</topic><topic>Numerical analysis</topic><topic>Singular value decomposition</topic><topic>Time measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Gorodnitsky, I.F.</creatorcontrib><creatorcontrib>Beransky, D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gorodnitsky, I.F.</au><au>Beransky, D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fast algorithms for regularized minimum norm solutions to inverse problems</atitle><btitle>Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers</btitle><stitle>ACSSC</stitle><date>1996</date><risdate>1996</risdate><volume>2</volume><spage>1213</spage><epage>1217 vol.2</epage><pages>1213-1217 vol.2</pages><issn>1058-6393</issn><eissn>2576-2303</eissn><isbn>9780818676468</isbn><isbn>0818676469</isbn><abstract>The computational cost of solving biomedical inverse problems is extremely high. As a result, expensive high end computational platforms are required for processing and at times a trade-off must be made between accuracy and cost of computation. We present two fast computational algorithms for solving regularized inverse problems. The computational advantages are obtained by utilizing the extreme discrepancy between the dimension of the solution space and the measured data sets. The algorithms implement two common regularization procedures, Tikhonov regularization and truncated singular value decomposition (TSVD). The algorithms do not compromise the numerical accuracy of the solutions. Comparisons of costs of the conventional and proposed algorithms are given. Although the algorithms are presented in the context of biomedical inverse problems, they are applicable to any inverse problem with same characteristics, such as the geophysical inverse problems and non-destructive evaluation.</abstract><pub>IEEE</pub><doi>10.1109/ACSSC.1996.599137</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1058-6393
ispartof Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computers, 1996, Vol.2, p.1213-1217 vol.2
issn 1058-6393
2576-2303
language eng
recordid cdi_ieee_primary_599137
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biomedical computing
Biomedical measurements
Computational efficiency
Costs
Geophysical measurements
Geophysics computing
Inverse problems
Numerical analysis
Singular value decomposition
Time measurement
title Fast algorithms for regularized minimum norm solutions to inverse problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A54%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fast%20algorithms%20for%20regularized%20minimum%20norm%20solutions%20to%20inverse%20problems&rft.btitle=Conference%20Record%20of%20The%20Thirtieth%20Asilomar%20Conference%20on%20Signals,%20Systems%20and%20Computers&rft.au=Gorodnitsky,%20I.F.&rft.date=1996&rft.volume=2&rft.spage=1213&rft.epage=1217%20vol.2&rft.pages=1213-1217%20vol.2&rft.issn=1058-6393&rft.eissn=2576-2303&rft.isbn=9780818676468&rft.isbn_list=0818676469&rft_id=info:doi/10.1109/ACSSC.1996.599137&rft_dat=%3Cproquest_6IE%3E16053216%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16053216&rft_id=info:pmid/&rft_ieee_id=599137&rfr_iscdi=true